Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling a Microscale Proportional Flow Controller

H. Prentice-Mott, D. Irimia, A. Russom, and M. Toner
Center for Engineering in Medicine (BioMEMS Center), Massachusetts General Hospital, Charlestown, MA, USA

Microfluidics is able to provide many benefits to the fields of biology and chemistry through its ability to use small amounts of fluid and to finely control the environment of the experiment. However, the precision of the flow rate control at the microscale remains limited to either off-chip variable-flow-rate pumps or on-chip valves.Here, we report an on-chip pneumatic valve that allows for ...

Study of Nonlinear Effects in Electrokinetics

G. Soni, T. M. Squires, and C. D. Meinhart
University of California in Santa Barbara, Santa Barbara, CA, USA

We present an experimental and numerical investigation of induced charge electroosmosis (ICEO) on a planar electrode surface directly in contact with a high conductivity electrolytic solution. Symmetric rolls of ICEO flow were produced on the electrode by placing it in an AC electric field. The slip velocity was measured for a range of AC voltages and frequencies using micro particle image ...

Simulating Frequency Nonlinearities in Quartz Resonators at High Temperature and Pressure

A. Beerwinkle[1], R. Singh[1], and G. Kirikera[2]
[1]Mechanics of Advanced Materials Laboratory, School of Mechanical and Aerospace Engineering, Oklahoma State University, Tulsa, OK
[2]Geophysical Research Company, LLC, (GRC) Tulsa, OK

A three-dimensional finite element model, based on the linear field equations for superimposed small vibrations onto nonlinear thermoelastic stressed media given by Lee and Yong, was developed. This method involves solving the thermal stress and piezoelectric model with geometric and material nonlinearities. The thickness-shear mode frequency response of the model was benchmarked to ...

Wireless RF Digital System for Mouth-Embedded Multi-Sensor Communication

I.M. Abdel-Motaleb[1], J. Lavrencik [1]
[1]Department of Electrical Engineering, Northern Illinois University, DeKalb, IL, USA

There is urgent need to monitor dental and oral diseases, such as tooth decay, gum diseases, and teeth grinding. Such monitoring can be achieved by embedding sensors in the mouth. This technique faces some difficulties. The first is how the power needed for the operation of the sensors and the associated electronic chips can be generated. This power can be generated using the pressure exerted by ...

Motion of Uncharged Particles in Electroosmotic Flow through a Wavy Cylindrical Channel

N. Qudus[1], T. Mahbub[1], S. A. Ali[1], and M. Shajahan[1]
[1] Bangladesh University of Engineering and Technology, Dhaka Bangladesh

A finite element model is employed to describe the electric potential distribution and electroosmotic flow field inside a wavy cylindrical channel. The model uses coupled Laplace and Poisson-Boltzmann to evaluate the electric potential distribution inside the channel. It also contains continuity and Navier–Stokes equations for the solution of fluid flow. A particle trajectory model was ...

A Study of Lubricating Flows in MEMS Bearings

E. Gutierrez-Miravete[1], and J. Streeter[2]

[1]Department of Engineering and Science, Rensselaer at Hartford, Hartford, Connecticut, USA
[2]Optiwind, Torrington, Connecticut, USA

The bearing and shaft are part of a safe and arm device constructed as an assembly by a multi-layer additive/subtractive plating and planarization processes (EFAB technology). Devices are constructed by a multi-layer additive/subtractive planarization process. This paper evaluates the lubricating flow between the shaft and journal of the MEMS bearing for seven configurations. The pressure ...

Applied Multiphysics in Thermoresistive and Magnetoresistive Sensor Models

R.W. Pryor
Pryor Knowledge Systems, Inc.
COMSOL, Certified Partner

Efficient, effective, and functional operation of autonomous systems requires a comprehensive real-time understanding, by those systems, of the embedding environment. This paper presents a brief overview of the multiphysics considerations involved in the development of models for thermoresistive and magnetoresistive sensors systems.

A Magnetically Driven Micro-Mixing Device and its Numerical Analysis

A. M. Morega1, J. C. Ordonez2, and M. Morega1
1Politehnica University of Bucharest, Bucharest, Romania
2Florida State University, Tallahassee, FL, USA

In this paper, we present a FEM model of a mixing MEMS μTAS device. A quasistatic magnetic field, produced by sequentially switched DC currents advected through conductors embedded in the device substrate beneath the flow channel, is used to mix the working magnetic fluid, while it is forced to flow through a rib walled channel. The body forces in the magnetized fluid perturb the otherwise ...

Modeling and Characterization of Superconducting MEMS for Microwave Applications in Radioastronomy

N. Al Cheikh[1], P. Xavier[1], J. Duchamp[1], and K. Schuster[2]
[1]Institute of Microelectronics, Electromagnetism and Photonics (IMEP-LAHC), Grenoble, France
[2]Institute of Millimetrics Radio Astronomy (IRAM), Grenoble, France

Superconducting GHz electronics circuits are frequently used in Radio Astronomy instrumentation. The features of these instrumentations can be significantly improved by using tuneable capacitances, which can be realized by electrically actuated, micromechanical bridges (MEMS) made of superconducting Niobium (Nb). In order to analyze the electromechanical behavior of such devices and the intrinsic ...

Designing the Actuator for the Next-Generation Astronomical Deformable Mirrors: a Multidisciplinary and Multiphysics Approach

C. Del Vecchio[1], R. Biasi[2] , D. Gallieni[3], and A. Riccardi[1]

[1]INAF-OAA, Fierenze, Italy
[2]Microgate Srl, Bolzano, Italy
[3]ADS International Srl, Valmadrera, Italy

The actuation system of the deformable mirror is one of the crucial components of an Adaptive Optics unit. One possible implementation comprehends a linear force motor and a capacitive sensor providing the feedback measure signal. Choosing a magnetic circuit that makes optimum use of the magnetic force delivered by a current and properly arranging the electrostatic geometry allows to obtain very ...

Quick Search