Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

A Semplified Model for the Evolution of a Geothermal Field

L. Meacci[1], A. Farina[1], F. Rosso[1], I. Borsi[1], M. Ceseri[1], and A. Speranza[1]


[1]Dipartimento di Matematica U. Dini, Università degli Studi di Firenze, Firenze, Italy

The problem is to understand how a geothermal field can evolve from a water dominated state into a vapor dominated one. A first answer to this question is given by a simplified mathematical model of the dynamics of a geothermal field in which the geothermal fluid is entirely composed by pure H2O. We considered a 1-D geometry and we developed a dynamic model that presents a clear interface ...

State of Stress of Subducting Slabs from Viscoelastic Plane Strain Numerical Modelling

E. Carminati[1] and P. Petricca[1]
[1]Dipartimento di Scienze della Terra, Università di Roma La Sapienza, Roma, Italy

Using 2D viscoelastic plane strain models we investigate the dependency of the stress field of slabs on geometry and kinematics of subduction zones (relative velocity of interacting plates and their absolute velocity with respect to the mantle). We conclude that the concentration of Von Mises stress is controlled by the geometry (curvature) of the slab and that downdip compression in subducting ...

Numerical Simulation of Temperature and Stress Fields in the Rock Heating Experiment

P. Rálek[1], M. Hokr[1]
[1]Technical University in Liberec, Liberec, Czech Republic

Presented work is motivated by pre-realization phase of rock heating experiment in underground, testing properties for cyclic energy storage. Heating unit, installed in large borehole from end of a tunnel, is fixed to the rock face with the geo-polymer. Rest of the borehole is filled with isolation material. We used the Heat Transfer Module and the Structural Mechanics Module in COMSOL for ...

Coupled Models of Lithospheric Flexure and Magma Chamber Pressurization at Large Volcanoes on Venus

G. Galgana[1], P. McGovern[2], and E. Grosfils[2]

[1]Lunar and Planetary Institute, Houston, Texas, USA
[2]Pomona College, Claremont, California, USA

We present an implementation of the Structural Mechanics module of COMSOL Multiphysics to model the state of stress associated with the emplacement of large volcanic edifices on the surface of a planet. These finite element models capture two essential physical processes: (1) Elastic flexure of the lithosphere beneath the edifice load, and (2) Pressurization of a magma-filled chamber that serves ...

The Soil as Bioreactor: Reaction-diffusion Processes and Biofilms

M. Richter[1], S. Moenickes[2], O. Richter[2], T. Schröder[1]
[1]BASF SE, Agricultural Center, Limburgerhof, Germany
[2]Institute of Geoecology, TU Braunschweig, Braunschweig, Germany

In a soil pore, water flows through the biofilm, where the density of the latter was assumed to represent a flow resistance. This mechanism was implemented as a local change of fluid viscosity proportional to local biofilm density. It was assumed that diffusive substrate transport is possible through the biofilm region such that the biofilm was able to degrade the substance. Maximum flow ...

A Coupled Analysis of Heat and Moisture Transfer in Soils

E. Evgin, J. Infante Sedano, and Z. Fu
University of Ottawa
Ottawa, ON
Canada

This paper is a part of a study on energy piles for heating and cooling of buildings. Energy piles are used for two reasons: (1) to transfer structural loads to foundation soils, and (2) to transfer heat from foundation soils to the building for space heating in winter time and for cooling purposes in summer time by transferring heat from the building to the foundation soils. The efficiency of ...

Boundary Element Technique in Petroleum Reservoir Simulation

M. Liu, and G. Zhao
University of Regina
Regina, SK
Canada

Petroleum reservoir simulation is a process of modeling the complex physical phenomena inside a reservoir. This study presents an application of an analytical based numerical scheme so called the Boundary Element Method (DRBEM). It is proven to be able to provide a computationally efficient means of handling single and multiphase flow in a homogeneous medium through the comparison study with ...

Simulation of Heat Transfer during Artificial Ground Freezing Combined with Groundwater Flow

R. Hu [1], Q. Liu [1],
[1] School of Earth Science and Engineering, Hohai University, Nanjing, China

Based on the heat transfer and seepage theory in porous media, a 2D cross section of a horizontal AGF project is selected and a numerical model is set up, which is based on full coupling of temperature and flow fields by combining physical interfaces of Darcy's Law and Heat Transfer in Porous Media. The simulation results show that freezing wall appears in an asymmetrical shape as the ...

A Coulomb Stress Model to Simulate Induced Seismicity Due to Fluid Injection and Withdrawal in Deep Boreholes

G. Perillo[1], G. De Natale[2], C. Troise[2], A. Troiano[2], M.G. Di Giuseppe[2], A. Tramelli[2]
[1]University of Naples Parthenope, Naples, Italy
[2]INGV, Osservatorio Vesuviano, Naples, Italy

Fluid injection and withdrawal in deep wells is a basic procedure in mining activities and deep resources exploitation, i.e. oil and gas extraction, geothermal exploitation, geothermal permeability enhancement and waste ?uid disposal. All these activities have the potential to induce seismicity, as dramatically demonstrated by the 2006 Basilea earthquake of magnitude ML=3.4. The mechanism of ...

Numerical Simulation of Quasi-steady-state Gas Flow in a Landfill

Q. Zheng [1],
[1] Zhejiang University, Hangzhou, Zhejiang, China

Landfill is currently the most dominating method to dispose wastes, which are caused by the lives of residents and constructions of cities and towns. Because of large amounts of organic substances in landfills, they will undergo continuous microbial degradation, which generates a lot of landfill gas. The gas consists mainly of CH4, CO2, O2 and N2, and it is also a promising source of renewable ...