Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

The Dissolution and Transport of Radionuclides From Used Nuclear Fuel in an Underground Repository

Y. Beauregard[1], M. Gobian[2], and F. Garisto[2]
[1]University of Western Ontario, London, ON, Canada
[2]Nuclear Waste Management Organization, Toronto, ON, Canada

In the Canadian concept for a deep geological repository for used nuclear fuel, the used fuel bundles are placed in containers consisting of an inner steel vessel surrounded by a copper shell. The filled containers are placed in excavated tunnels or boreholes and surrounded by a compacted bentonite clay buffer material. In the event of container failure, the rate of migration of radionuclides ...

Groundwater Modeling as an Assessment Tool for Underground Mines Located in Fractured Massifs

J. Font-Capó[1], A. Nardi[1], M. Mendoza [2], E. Ruiz[2], S. Jordana[1], J. Molinero[1], P. Trinchero[1], J. Vargas[3]
[1]Amphos 21 Consulting, Barcelona, Spain
[2]Amphos 21 Perú, Lima, Perú
[3]Worley Parson/TWP, Lima, Perú

Some of the present metallic ores mines are located in areas formed by a heterogeneous fractured massif where groundwater flows preferentially through fractures. Underground mining in these zones can cause impacts in streams, lakes and change the natural water balance of the watersheds, leading to conflicts between traditional uses of water and the mining activity. Quantification of these ...

Effect of Groundwater Flow on the Subsurface Temperature within Crystalline Rocks of Southern Norway

Y. P. Maystrenko [1], O. Olesen [1],
[1] Geological Survey of Norway (NGU), Trondheim, Norway

The subsurface thermal regime has been investigated in boreholes from southern Norway. During the purely conductive 2D thermal modeling, the COMSOL Heat Transfer for Solids interface has been used to simulate heat transfer by heat conduction. COMSOL physics interfaces Heat Transfer in Porous Media and Porous Media and Subsurface Flow/Darcy's Law have been used to carry out a fully coupled ...

Effect of Parallel Strip Water Source Spacing on Lateral Infiltration Flux

M. García-Serrana [1], J. L. Nieber [1], J. S. Gulliver [1],
[1] University of Minnesota, Minneapolis, MN, USA

This analysis evaluates the importance of the lateral component of flow on the infiltration of water from parallel strip sources of water on the soil surface. Flow from such sources will be two-dimensional, having both vertical and lateral components. Here we examine the effect of the spacing between parallel strip sources and the texture of the soil on the rate of infiltration through a given ...

微波加热煤岩裂隙变形的电-热-固耦合模型

管伟明 [1], 聂欣 [1],
[1] 新疆大学,乌鲁木齐,新疆,中国

为研究不同加热方式下煤岩内部裂隙在热力耦合作用下的变形特征,建立了微波和常规加热两种数值模型,考查了不同温度场分布特征下裂隙周边应力应变场的变化过程。研究结果表明:微波加热,温度场分布具有内高外低的特征,此时裂隙周边分布的应力多为压应力,且数值较大,裂隙边界位移表现为向内收缩;常规加热,温度场分布具有外高内低的特性,此时裂隙周边分布应力多为拉应力,但量值较低,裂隙边界位移表现为向外扩张;热源越靠近裂隙压应力越明显,反之拉应力明显。

Building a Complex Geological Model Using Parametric Surfaces

S. Hoyer[1], M. Bottig[1], F. Zekiri[1], G. Götzl[1], A.K. Brüstle[1], G. Schubert[1], A. Nador[2]
[1]Geological survey of Austria, Vienna, Austria
[2]Geological Institute of Hungary, Budapest, Hungary

Temperature measurements of the subsurface are available due to hydrocarbon exploration in the project area, where the average drilling depth is about 2-4 km and the deepest well reaches about 8.5 km. Since the data is heavily uneven distributed, standard interpolation techniques did not deliver satisfying results. This is why numerical modeling was applied to assess the thermal regime of the ...

Development of a COMSOL Application for the Efficient Evaluation of an Engineered Barrier System

D. Sampietro [1], E. Abarca [1], H. von Schenck [2], J. Molinero [1]
[1] Amphos 21 Consulting S.L., Barcelona, Spain
[2] Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden

Radioactive waste repositories include barriers that work to contain the waste, thereby protecting human health and the environment. In deep geological disposal systems, barriers include the natural geological barrier and the engineered barrier system (EBS). The ability of the EBS to limit groundwater flow is important and optimized design solutions are often sought by means of numerical ...

Assessment of Spatial Variably Saturated Flow by Irrigation Moisture Sensors in 2-Dimensions using the COMSOL Multiphysics 4.1

A. Boluwade, and C. A. Madramootoo
Bioresources Engineering, McGill University
Ste. Anne De Bellevue, QC
Canada

This paper reports on the application of COMSOL Multiphysics’ Richard\'s Equation Interface in the assessment of irrigation moisture sensors for detecting the level of water saturation in a spatial variably saturated soil. The Richard\'s Equation (in COMSOL) provides the interface which automates the van Genuchten equation. A hypothetical soil column 4m by 4m was set up with seven irrigation ...

Diverse Models for Graphite Brick Deformation and Stress State in UK AGR Nuclear Reactors

J. Burrow [1], A. Bond [1],
[1] Quintessa Ltd, United Kingdom

The UK Advanced Gas-cooled Reactor fleet, operated by EDF Energy, utilize a graphite core consisting of a lattice of around 3000 annular bricks. Due to irradiation, oxidation and thermal effects, the bricks deform and loose mass as they age. Of key concern is the late-life behavior of the bricks, in particular the predicted time at which brick shrinkage reverses into expansion, generating large ...

Solution of Poroelastic Equations with Different Base Variables Using Equation-based Modeling

M. H. Akanda [1], Y. Cao [1], A. J. Meir [1],
[1] Department of Mathematics & Statistics, Auburn University, Auburn, AL, USA

Poroelasticity equations describe the interaction between fluid flow and solids deformation within a porous medium. Modeling of poroelasticity is coupling between elastic deformation of porous materials and Darcy’s law. Poroelasticity has numerous real world applications such as in reservoir engineering, bio-engineering, environmental engineering etc. We have used quasi-static poroelastic ...