Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Design of MEMS Based High Sensitivity and Fast Response Capacitive Humidity Sensor

R. Karthick, S. P. K. Babu, A. R. Abirami, and S. Kalainila
Periyar Maniammai University
Periyar Nagar
Vallam, Thanjavur
Tamilnadu, India

This paper presents the design and simulation of high sensitivity and fast response capacitive humidity sensor. Generally, the capacitive humidity sensor is made up of parallel electrode, the upper electrode being a grid with various line width and line spacing. A model is simulated using COMSOL Multiphysics. High sensitivity and fast response of the model is optimized by varying the ...

Design and Analysis of 3D Capacitive Accelerometer for Automotive Applications

G. Vijila, S. Vijayakumar, M. Alagappan, and A. Gupta
PSG College of Technology
Coimbatore
Tamil Nadu, India

This paper projects a novel 3D capacitive accelerometer design to identify a severe accident and initiate airbag deployment systems. It will detect the rapid negative acceleration of the vehicle to avoid the severity of the collision. Such a device demands excellent performance in terms of sensitivity, noise immunity, linearity, bias and scale factor stability over time and environmental ...

Simulation of MEMS based Flexible Flow Sensor for Biomedical Application

D. Maji[1], C. P. Ravikumar[2], and S. Das[1]
[1]School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
[2]Texas Instruments (India) Pvt. Ltd., Bangalore, India

Arterial disease, especially Coronary Artery Disease (CAD) is one of the leading causes of premature morbidity and mortality. During the flow, blood interacts with vessel wall mechanically and chemically which modulates the plaque formation in blood vessel leading to coronary artery diseases. Here we propose to simulate a MEMS based flexible flow sensor based on anemometer principle designed to ...

MEMS Resonator for RF Applications

V. Harshey
Visvesvaraya National Institute of Technology
Nagpur
Maharashtra, India

Vibrating mechanical tank components, such as quartz crystals and surface acoustic wave (SAW) resonators with Q’s in the range of 10e3–10e6, are widely used to implement high-Q oscillators and band pass filters in the radio frequency (RF) and intermediate frequency (IF) stages of communication transceivers. This paper will discuss designing of resonator and effects of various parameter on the ...

Heat Transfer Modeling and Analysis of a Rotary Regenerative Air Pre-heater

R. K. Krishna, R. Ramachandran, and P. Srinivasan
Birla Institute of Technology and Science
Pilani
Rajasthan, India

An attempt has been made to sustain the efficiency of an air pre-heater(APH) in the long run. The APH is modeled using COMSOL Multiphysics in 3D and fed with real life conditions. Upon Heat transfer analysis, the temperature profile was found out and from that, the regions undergoing maximum thermal fatigue stress was identified. The plates of the APH to the periphery are subjected to maximum ...

Design and Simulation of 3D ZnO Nanowire Based Gas Sensors for Conductivity Studies

N. Gouthami, D. Parthiban, M. Alagappan, and G. Anju
PSG College of Technology
Coimbatore
Tamil Nadu, India

The objective of this paper is to design a 3D Gas Sensor for sensing Hydrogen gas and to increase the conductivity at nano level. In this novel design, nanorods act as the sensing layer. The sensitivity towards gas adsorption is found to be increased due to its high surface to volume ratio. The total displacement and voltage on intermediate layer after gas adsorption will be changing by varying ...

Voltage and Capacitance analysis of EWOD system using COMSOL

D. Das[1], S. Sohail[1], S. Das[2], and K. Biswas[1]
[1]Electrical Engineering Department, IIT Kharagpur, India
[2]School of Medical Science and Technology, IIT Kharagpur, India

Electrowetting on Dielectrics (EWOD)systems is widely practiced digital microfluidic technique, used in Lab-on-a-Chip (LoC) system for biomedical application. In EWOD, with applied potential, the droplet minimizes its surface energy by transiting towards the actuated electrode. The problems with EWOD device for biological sample are that it will damage the cells if applied voltage across it ...

Numerical Modelling of Wave Propagation in Particulate Composites

P. S. K. Mylavarapu, and S. Boddapati
Defence Metallurgical Research Laboratory

Syntactic foams are hollow particle filled composites that have recently emerged as attractive materials for use in advanced structural applications in aerospace and defence industry. Ultrasonic characterization of these foams is performed extensively in order to understand the effect of porosity and particle size on the ultrasonic properties such as longitudinal velocity and attenuation. ...

Design, Simulation and Study of MEMS Based Micro-Needles and Micro-Pump for Biomedical Applications

P. K. Podder, D. Mallick, D. P. Samajdar, and A. Bhattacharyya
Institute of Radio Physics and Electronics
University of Calcutta
Kolkata
West Bengal, India

In this paper, we have addressed the issues related to the design and simulation of MEMS based silicon micro-needles for insertion of fluid into the dermis layer and into the subcutaneous fat layer. In addition, a poly-silicon micro-pump based on the principle of electrostatic actuation has been designed and simulated which can be integrated with the proposed micro-needles to control the fluid ...

Design and Simulation of MEMS Based Electrothermal Micromirror for 3D Spatial Movement

D. Mallick, and A. Bhattacharyya
Institute of Radio Physics and Electronics
University of Calcutta
West Bengal, India

Micromirror is a versatile MEMS device, which finds use in many application areas. In this paper, we have addressed the issues related to the design and behavioral simulation of MEMS based electro-thermal micromirror [Figure 1] for 3D motion. Two types of thermal actuation mechanism are used in the designed device. For in-plane movement poly-silicon made two-hot-arm actuatoris used. Here, the ...

1 - 10 of 61 First | < Previous | Next > | Last