See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

Dynamic Crack Propagation in Fiber Reinforced Composites

C. Caruso[1], P. Lonetti[1], and A. Manna[1]

[1]Department of Structural Engineering, University of Calabria, Arcavacata di Rende, CS, Italy

A generalized model to predict dynamic crack propagation in fiber composite structures is proposed. The proposed approach is based on a generalized formulation based on the Fracture Mechanics approach and Moving mesh methodology. Consistently to the Fracture Mechanics, the crack ... Read More

Hydrogen Vehicle Leak Modelling in Indoor Ventilated Environments

A. Hallgarth[1], A. Zayer[1], A. Gatward[2], and J. Davies[2]
[1]Hazard Research & Risk Consultants Ltd, Aberystwyth, Wales, United Kingdom
[2]Independent Consultants, United Kingdom

This paper presents and discusses HazRes’ research and results associated with the simulation and modelling of hydrogen release and dispersion events in indoor enclosed environments, using COMSOL Multiphysics. HazRes has developed a gas dispersion model in COMSOL, which takes into ... Read More

Level Set Method for Fully Thermal-Mechanical Coupled Simulations of Filling in Injection and Micro-Injection Molding Process

M. Moguedet[1], R. Le Goff[1], P. Namy[2], and Y. Béreaux[3]
[1]Pôle Européen de Plasturgie, Bellignat, France
[2]SIMTEC, Grenoble, France
[3]INSA de Lyon, Site de Plasturgie, Bellignat, France

In this work we tackle a more theoretical aspect of micro-injection molding, to better understand physics during the process, through numerical simulations of cavity filling. We developed a two phase flow approach by the use of COMSOL Multiphysics®. In a first step, a Level Set model is ... Read More

Multiphysics Modelling of Food Dehydration during RF Exposure

R. Renshaw[1]
[1]e2v Ltd., Essex, United Kingdom

There is a requirement for an RF (Radiofrequency) industrial dryer that will be capable of dehydrating foodstuff to the correct level after the product has been fried. RF drying should actively target moisture, due to waters high dielectric properties. An industrial dryer can be ... Read More

Modeling the Internal Pressure Distribution of a Fuel Cell

P.A. Koski[1] and M.S. Mikkola[1]
[1]Department of Applied Physics, Helsinki University of Technology, Espoo, Finland

A 3D FEM (Finite Element Method) model for predicting the internal pressure distribution of a fuel cell stack is presented. The model includes contact pair boundary conditions between the most critical components, thermal expansion and Young's moduli as a function of temperature. The ... Read More

Quench Propagation in 1-D and 2-D Models of High Current Superconductors

G. Volpini[1]
[1]LASA Lab., Milan Dept., Istituto Nazionale di Fisica Nucleare, Milano, Italy

The understanding of quench, or the sudden transition to the normal state of a high-current Superconductor (SC), is fundamental for the design of a SC magnet, and it is widely discussed in the literature. This paper presents some simple COMSOL models, which are compared with well-known ... Read More

Energy Transformation Damping

G.S. Mulder[1]
[1]Leiden, The Netherlands

A model for material damping is presented in terms of internal friction and in terms of a variation of stiffness. In the latter case the idea is that the stiffness increases if elastic energy is stored and decreases if elastic energy is released. In case of a single mass spring system ... Read More

Measuring and Calculation of Positive Corona Currents Using COMSOL Multiphysics®

M. Quast[1] and N.R. Lalic[1]
[1]Gunytronic GmbH, St Valentin, Germany

The sensor type developed by Gunytronic uses corona discharge for measuring flow rates in exhaust streams of automotives, aircrafts and industrial plants. This paper will present the development of testing equipment used in laboratory for investigating physical relations on corona ... Read More

Simulation of a Modular Die Stamp for Micro Impact Extrusion

A. Schubert[1][2], R. Pohl[1], and M. Hackert[1]
[1]Chair Micromanufacturing Technology, Faculty of Mechanical Engineering, Chemnitz University of Technology, Chemnitz, Germany
[2]Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

Micro impact extrusion is investigated at Chemnitz University of Technology as a potential procedure for large area machining of micro cavities within the scope of the SFB/Transregio 39 PT-PIESA of the German Research Foundation. Applying impact extrusion micro forming is done by ... Read More

Bio-Effluents Tracing in Ventilated Aircraft Cabins

G. Petrone[1], L. Cammarata[1], and G. Cammarata[1]
[1]Department of Industrial and Mechanical Engineering, University of Catania, Catania, Italy

Ventilation and Indoor Air Quality (IAQ) are issues of very high interest, determining comfortable conditions for occupants and no-contaminated local atmosphere. The aircraft cabins are more confined and have a higher occupant density than other indoor environments such as offices or ... Read More