See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

Heat Transfer and Phase Changex

A COMSOL Multiphysics® Study of the Temperature Effect on Chemical Permeation of Air Supply Tubes

R. Kher [1], C. Gallaschun [1], D. Crockill [1], R. Pillai [1], ,
[1] Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, USA

Air supply hoses are also predominantly used in the medical industry to aid in patient oxygen intake. In many situations, the outside of the hose can be contaminated with chemicals, especially if the hose lies on the ground in an environment where chemicals are easily found. Permeation ... Read More

Thermohydraulic Study of a Fixed Bed for the Core of a Nuclear Reactor

J. C. Almachi [1], J. A. Montenegro [1],
[1] Departamento de Formación Básica, Escuela Politécnica Nacional, Quito, Pichincha, Ecuador

The fixed beds have the advantage of large heat transfer area, for they are used in some designs of innovative nuclear reactors as the reactor FBNR. Inside of study of fixed beds is important to define the following parameters: flow minimum and velocity profile of cooling fluid, ... Read More

Transient Heating and Cooling in a Packed Bed with Fluid Flow for Controlling Solute Adsorption

A. Horner [1], S. Groskreutz [1], S. Weber [1],
[1] University of Pittsburgh, Pittsburgh, PA, USA

We have created and optimized a multiphysics model using COMSOL Multiphysics® software that incorporates the Free and Porous Media Flow and Heat Transfer in Porous Media interfaces to simulate the temperature profile of a chromatographic system under external heating and cooling ... Read More

Multiphysics Analysis of a Photobioreactor

L. T. Gritter [1], E. Dunlop [2], J. S. Crompton [1], K. C. Koppenhoefer [1]
[1] AltaSim Technologies, Columbus, OH, USA
[2] Pan Pacific Technologies Pty Ltd, Adelaide, South Australia, Australia

Photo-bioreactors generate biomass by providing a controlled environment for the cultivation of algae due to photosynthesis. Algae cultivation can be controlled through the operating parameters and bioreactor environment to allow for high productivity and the use of systems with large ... Read More

Pore-Level Bénard–Marangoni Convection in Microgravity

P. Mohammadmoradi [1], A. Kantzas [1],
[1] University of Calgary, Calgary, AB, Canada

Pore-level displacement of heavy-oil during thermal operations such as SAGD and CSS is a complex multi-scale phenomenon. As gravity drainage is the main depletion mechanism within the intergranular pore space, the surface tension-related phenomena are dominant in intra-granular micro ... Read More

COMSOL Multiphysics® Software Simulation Application for Thermoplastics Viscosity Measurement

Q. Guo [1], S. Ahmed [2],
[1] EHC Canada, Inc., Oshawa, ON, Canada
[2] University of Ontario Institute of Technology, Oshawa, ON, Canada

Present study discusses a new method of how to apply numerical simulation in COMSOL Multiphysics® software to improve the accuracy of polymer melts viscosity measurements. The main emphasis is placed on evaluating the effects of entrance and exit geometry of a capillary rheometer on ... Read More

Heat Transfer Optimization of a Solar Radiation Concrete Oven for Rural Areas

I. Abu-Mahfouz [1], G. F. Mathews IV [1], M. J. Young [1],
[1] Penn State University Harrisburg, Middletown, PA, USA

The process of creating healthy food and drinking water typically requires electricity and fuel sources that are not available in rural areas. Africa has an abundance of solar radiation which when properly harnessed creates a viable heating source for cooking food and purifying water. ... Read More

Radio Frequency Tissue Ablation Simulation with COMSOL Multiphysics® Software

N. Elabbasi [1], M. Hancock [1],
[1] Veryst Engineering, Needham, MA, USA

Radiofrequency (RF) tissue ablation is commonly used to treat medical conditions involving dysfunctional tissue especially in the heart, kidneys, lungs, bones, or liver. An electrode at the tip of a catheter delivers high frequency current (350-500 kHz) to the targeted tissue causing it ... Read More

Modeling Scheil Cooling of a Metal Alloy: Thermodynamic and Multiphysics Solidification

T. Marin-Alvarado [1],
[1] M4Dynamics, Toronto, ON, Canada

During solidification of a multicomponent liquid, either a metal alloy, a sulphide matte or an oxide slag system, the process is highly dependant not only on temperature but in composition as well. The thermodynamic properties of the system will dictate what phases or mixtures ... Read More

Simulation of a Dynamic Scraped Surface Heat Exchanger for Non-Newtonian Fluids

S. Birla [1],
[1] ConAgra Foods, Omaha, NE, USA

Scraped surface heat exchangers (SSHEs) are commonly used in the food, chemical, and pharmaceutical industries for heat transfer, crystallization, and other continuous processes. One of the factor posing difficulties to heat transfer is viscosity. Highly viscous fluids tend to generate ... Read More