See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

2012 - Bostonx

Finite Element Convergence and Speed-Up Studies Using COMSOL Multiphysics and LiveLink™ for MATLAB® with Large Assembly Models

H. Pourzand[1], A.H. Aziz[1], A. Singh[1]
[1]Pennsylvania State University, State College, PA, USA

COMSOL Multiphysics along with its LiveLink™ for MATLAB® is used to investigate the needed number of elements and the required order of Lagrangean p element for a number of different simulation models. For this task, convergence study, speed up testing and interactive meshing is ... Read More

Using COMSOL to Estimate the Heat Losses of Composite Panels Undergoing Repairs Using Bayesian Inference

A. Emery[1]
[1]University of Washington, Seattle, WA, USA

Composite repairs involve applying a prescribed heat flux which must be adjusted to account for heat losses. These losses must be estimated. Parameter estimation requires a knowledge of sensitivities. This is often done using finite differences. As shown in the figure, substantial errors ... Read More

Modeling Magnetic Configurations for Improved Separations of Magnetic and Non-Magnetic Materials

S. Khushrushahi[1], T.A. Hatton[1], M. Zahn[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

Magnetic separation of magnetic liquid phases/particles from non-magnetic liquid phases/particles are needed for applications such as cleaning up oil spills by separating oil and water liquid phases or separating magnetic materials from non-magnetic materials in biomedical and ... Read More

Establishing Absorbed Dose Thresholds for Nonlinearities in Water Calorimetry

R.E. Tosh[1], H. Chen-Mayer[1]
[1]National Institute of Standards and Technology, Gaithersburg, MD, USA

The technique of water calorimetry for primary-standard dosimetry of radiotherapy-level ionizing radiation is well established at national metrology institutes around the world, where such a direct realization of absorbed dose establishes the basis for calibrating instruments used for ... Read More

Heat Transfer in an Oscillating Meniscus

J. Plawsky[1]
[1]Rensselaer Polytechnic Institute, Troy, NY, USA

Experimental data for oscillations occurring at the three phase contact line of an evaporating HFE 7000 meniscus on a silica substrate is presented. The frequency of the oscillations were found to depend on the local value of the evaporative heat ?ux. The thickness, slope, and curvature ... Read More

Constructing COMSOL Models of a Bacteriological Fuel Cell

R. Coker[1], J. Mansell[1]
[1]NASA - Marshall Space Flight Center, Huntsville, AL, USA

We have started constructing preliminary design COMSOL models of a bacteriologically driven \'fuel cell\' that is intended to process waste products, such as carbon dioxide and brine, from a crewed vehicle. At this early stage, this complex system is reduced to two electrodes separated ... Read More

Energetics of Half-Quantum Vortices

K. Roberts[1]
[1]University of Illinois at Urbana-Champaign, Urbana, IL, USA

Magnetic cantilever measurements have detected half-flux states in mesoscopic rings of the layered material Sr2RuO4, adding evidence that superconducting Sr2RuO4 may be described by a p-wave order parameter. A proposal accounting for this behavior has been presented in which the ... Read More

Downscale Finite Element Modeling of Aortic Valve Leaflets for In-Situ Estimation of Cell Level Mechanics

R. Buchanan[1], M. Sacks[1]
[1]Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, University of Texas, Austin, TX, USA

As in all tissues, mechanical forces in the aortic valve (AV) modulate the constituent cell population’s physiology and biosynthetic activity. While advances have been made toward the understanding of this complex multi-scale relationship, the specific role that and extracellular matrix ... Read More

A Study of the Effects of Mounting Supports, and Dissipation on a Piezoelectric Quartz Double-Ended Tuning Fork Gyroscope

G. Choi[1], Y. Yong[1]
[1]Rutgers University, New Brunswick, NJ, USA

A COMSOL model of a piezoelectric quartz double ended tuning fork gyroscope was implemented. The gyroscope has two detection modes; the first mode detects the angular velocity about a z-axis perpendicular to the tuning fork plane (x-y plane), while the second mode detects the angular ... Read More

Parametric Study of Electrolyte-Supported Planar Button Solid Oxide Fuel Cell

A. Aman[1], R. Gentile[1], Y. Xu[1], N. Orlovskaya[1]
[1]Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL, USA

Fuel cells are devices that convert chemical energy of a fuel into electrical energy through electrochemical processes. One of the types of fuel cell is the Solid Oxide Fuel Cell (SOFC) that uses solid ceramics for electrolytes. Numerical simulation involves constructing a mathematical ... Read More