Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Use of COMSOL Multiphysics in the Modeling of Ion Source Extraction

M. Cavenago
Laboratori Nazionali di Legnaro

A two dimensional description of plasma charged sheath and ion extraction, including the complete plasma sheath equation, is proposed and reduced to a system of coupled fields, implemented with use of COMSOL Multiphysics. A separate application of the weak form to the Hamilton-Jacobi and Poisson equations is also described, using five coupled fields.

Low Frequency Analysis of Small Rooms by Means of a Finite Element Model

P. Bonfiglio, and A. Farnetani
Università degli Studi di Ferrara

The main object of this paper is the determination of the impulse response, in the low frequency range, for calculating the reverberation time and the energetic parameters in this space. An absorbing material is modelled by using the propagation of sound waves in an equivalent fluid. The results of this Finite Element model are compared with experimental measurements of impulse responses ...

3D Simulation and Experimental Comparison of Temperature Dynamics in Laser Welded Cornea

F. Rossi[1], R. Pini[1], and L. Menabuoni[2]
[1] Istituto di Fisica Applicata, CNR, Firenze
[2] U.O. Oculistica, Prato

3D model analysis of the temperature dynamics during a welding process is presented. Bio-heat equation described laser-tissue interaction in porcine and human eyes, simulating the surgery conditions. The modeled behavior of the superficial cornea temperature was compared with direct measurements performed by an infrared thermo-camera. The results indicated a selective, spatially-confined ...

Numerical Simulation of the Heat Transfer and Elastic Dynamics of Nanodisk Arrays in Pump-Probe Laser Experiments

B. Revaz[1,2], C. Giannetti[2], F. Banfi[1], M. Montagnese[3], G. Ferrini[2], and F. Parmigiani[3,4]
[1] University of Geneva, Switzerland
[2] Università Cattolica del Sacro Cuore, Brescia
[3] Università degli Studi di Trieste
[4]Sincrotrone Trieste, I-34012 Basovizza, Trieste

We present in this paper, numerical simulations of the heat transfer and elastic dynamics of permalloy nanodisks on crystalline Si. The goal of this work is to simulate recent pump-probe laser experimental results obtained in our laboratory.

A FEM Analysis of Transport Phenomena occurring during Vegetable Drying

S. Curcio
University of Calabria

The aim of the present work is the formulation of a theoretical model describing the transport phenomena involved in a food drying process by a convective oven. The proposed model represents a general and predictive tool capable of describing the real oven’s behavior over a wide range of process and fluid-dynamic conditions. The resulting system of non-linear unsteady-state partial ...

Coupling of Catalytic Endothermic and Exothermic Reactions by CPR

S. Vaccaro, G. Ferrazzano, and P. Ciambelli
Università di Salerno

Mathematical modelling of a catalytic plate reactor for methane steam reforming with COMSOL Multiphysics was carried out. The model reactor includes three channels where methane combustion occurs on the plates bordering the inner side of the outermost channels, whereas methane steam reforming takes place on the plates bordering the central channel.

2D Model of Floating Breakwater Dynamics under Linear and Nonlinear Waves

L. Martinelli[1], and P. Ruol[2]
[1] Università di Bologna
[2] IMAGE, Università di Padova

This paper describes an example of full fluid structure interaction. The 2D dynamics of a box-type pile-anchored floating breakwater is solved by means of two models using COMSOL Multiphysics . Simulated wave transmission and vertical displacements of the floating breakwater agree well with physical model results.

Finite Element Analysis of Electro-mechanical Deflection of Cantilevers for SPM and MEMS Applications

D. Moro, and G. Valdrè
University of Bologna

The understanding of the distribution of electrostatic forces at the nanoscale is of fundamental importance for the development of nanotechnology. In this work, in order to quantify the EFM cantilever/tip-sample interaction, we present a 3D static Finite Element Analysis of the electromechanical interaction between conductive probes and samples, using COMSOL Multiphysics. The simulation ...

Simulation of Surface Stress Effect on Mechanical Behaviour of Silicon Microcantilever

A. Ricci, E. Giuri, and C. Ricciardi

Microcantilevers made of crystal silicon are probably the most diffused type of MEMS because of their simple fabrication and their vast applications. In this presentation we treat the mechanical behaviour of silicon mirocantilevers, and also give an overview of the many application areas that these apply to.

Fouling of Heat Exchangers in the Dairy Industry by Coupling Flow and Kinetics Modelling

M.V. De Bonis, and G. Ruocco
CFDfood, DITEC, Università degli studi della Basilicata, Potenza

The present work exploits modelling of a heat exchanger single channel during the pasteurization of milk. A 2D computation has been performed with COMSOL Multiphysics showing the potential application to optimized geometries and for a variety of products of known biochemical evolution.

Quick Search