Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Computational Evaluation of Improved Anaerobic Digestion Reactor Designs

A. A. Forbis-Stokes [1], M. A. Deshusses [1],
[1] Duke University, Durham, NC, USA

The purpose of this study was to investigate the impact on number of baffles placed in horizontal- or vertical-alignment of an anaerobic baffled reactor (HABR and ABR, respectively). Computational fluid dynamics was used to evaluate hydraulic performance of each and determine what number of compartments should be used to optimize reactor volume while adding minimal complexity. The findings ...

Theoretical Simulations of Silicon-On-Nothing (SON) Structures

C. Grau Turuelo[1], B. Bergmann[1], C. Breitkopf[1], F. Hoffmann[2], L. Brencher[2]
[1]Technische Universität Dresden, Dresden, Saxony, Germany
[2]Infineon Technologies GmbH, Dresden, Dresden, Saxony, Germany

A novel technique for semiconductor manufacturing is introduced: Silicon-On-Nothing. This process consists of an initial cylindrical trench which has a shape evolution under certain conditions: high temperature (1100 °C), low pressure (10 Torr) and a non-oxidizing atmosphere such as hydrogen. These conditions enable a, mainly, surface diffusion phenomenon whose final result is an empty space ...

Microscale Simulations of Catalyst Deactivation During Gas-Phase Upgrading of Biomass Pyrolysis Vapors

P. N. Ciesielski [1], D. Robichaud [2], B. Donohoe [1], M. Nimlos [2],
[1] Biosciences Center, National Renewable Energy Laboratory, Golden, CO, USA
[2] National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, USA

Catalytic fast pyrolysis is a process by which biomass may be converted into liquid hydrocarbon transportation fuels and chemical co-products that are alternative to their petroleum-derived counterparts. Chemical compounds in raw pyrolysis vapor have high oxygen content and therefore must be deoxygenated in order to meet specifications for hydrocarbon fuels. One strategy to accomplish this is ...

Modeling Migration-Diffusion-Reaction Processes in an Idealized Lithium-Sulfur Cell

G. Minton [1], R. Purkayastha [1], S. Walus [1], M. Marinescu [2], T. Zhang [2], G. Offer [2],
[1] Oxis Energy Ltd, Oxford, United Kingdom
[2] Imperial College London, London, United Kingdom

During the basic operation of a lithium-sulfur (Li-S) cell, sulfur molecules are required to undergo a complex mix of electrochemical and chemical reaction processes. To date, almost all modeling of Li-S cell behavior has been undertaken using electroneutral, structurally homogenized, cell scale models accounting for most of these processes. The presented work was undertaken in order to try and ...

Migration of Mineral Oil Saturated and Aromatic Hydrocarbons(MOSH, MOAH) through Multi-Layered Packaging into Food

C. Kirse [1], F. Edel [1], H. Briesen [1],
[1] Chair of Process Systems Engineering, Technical University of Munich, Germany

Substances like Mineral Oil Saturated Hydrocarbons (MOSH) and Mineral Oil Aromatic Hydrocarbons (MOAH) are suspected to be carcinogenic. Furthermore, MOSH/MOAH migrate through the packaging into food stuff. This work aims at modelling, how much MOSH/MOAH migrates from the packaging into food to evaluate the exposure to toxic substances. The scope of the project is not to investigate one specific ...

Coupling Forced Convection in Air Gaps with Heat and Moisture Transfer inside Constructions

M. Bianchi Janetti[1], F. Ochs[1]
[1]University of Innsbruck, Innsbruck, Austria

Introduction: The simulation of coupled heat and moisture transfer in constructions is becoming even more important in the last years. COMSOL Multiphysics represents a powerful tool for this kind of simulations as shown in [1,2,3], although applications in this area are still rare. For the realistic prediction of the heat and moisture distribution in building elements exposed to external ...

Impact Assessment of Hydrologic and Operational Factors on the Efficiency of Managed Aquifer Recharge Scheme

M.A. Rahman[1], P. Oberdorfer[1], Y. Jin[1], M. Pervin[1], E. Holzbecher[1]
[1]Department of Applied Geology, Geoscience Center, University of Göttingen, Göttingen, Lower Saxony, Germany

Due to increased demands on groundwater accompanied by increased drawdowns (ca. 2-3 meters/year), technologies that use alternative water resources have been suggested for Dhaka City, Bangladesh. Preliminary studies show that managed aquifer recharge (MAR) would help in optimal use of available water resources and to reduce adverse effects of pumping in the Dupitila aquifer of the city. In this ...

Numerical Analysis of the Self-Heating Behaviour of Coal Dust Accumulations - new

D.Wu[1], E. Van den Bulck[1]
[1]Katholieke Universiteit Leuven, Department of Mechanical Engineering, KU Leuven, Belgium

Introduction Self-heating behaviour of dust accumulations is a multiphysics field coupled heat and mass transfer in the porous media. A typical experimental apparatus with a hot storage oven and mesh wire baskets has been taken as the study object. The influence of gas flow velocity, oxygen concentration and ambient temperature on the self-heating behaviour of the dry coal dust sample has been ...

HAMSTAD Benchmarks Using the COMSOL Multiphysics® Software Revisited

J. v. Schijndel [1], S. Goesten [1], H. Schellen [1],
[1] Eindhoven University of Technology, Eindhoven, Netherlands

Benchmarks are important tools to verify computational models. In the research area of building physics, the so-called HAMSTAD (Heat, Air and Moisture STAnDardization) project is a very well known benchmark for the testing of simulation tools. In this paper we revisit this benchmark by modeling all five subtasks using the COMSOL Multiphysics® software. Again we conclude that the COMSOL® software ...

Modeling the Performance of Energy Recovery Ventilators

N. Lemcoff[1], R. Pastor[2], and E. Miravete[1]
[1]Rensselaer Polytechnic Institute, Hartford, CT
[2]General Dynamics Electric Boat, Groton, CT

The objective of this study is to numerically evaluate the effectiveness of an energy recovery ventilator (ERV) during the summer and winter seasons. The energy recovery ventilator allows heat and mass transfer between two air streams separated by a membrane. The effects of varying the following parameters were examined: flows through the supply and exhaust ducts, height of the exhaust channel, ...