Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Assessment of Squeeze-off Location for Small Diameter Polyethylene (PE) Pipe and Tubing

O. Lever [1], E. Lever [1],
[1] Gas Technology Institute, Des Plaines, IL, USA

This poster showcases a fully parametric, nonlinear, time-dependent polyethylene (PE) pipe squeeze-off model that was developed in COMSOL Mulitphysics® software by the Gas Technology Institute (GTI) and Veryst Engineering, and sponsored by Operations Technology Development (OTD). Utilizing the Nonlinear Structural Materials Module and a custom viscoelastic-plastic constitutive model developed ...

Modeling and Analysis of SMA-Based Adaptive Structures

S. Yang[1], and S. Seelecke[2]

[1]Department of Aerospace, Northwestern Polytechnical University, Raleigh, NC, USA
[2]Department of Mechanical & Aerospace Engineering, North Carolina State University, Xi’an, Shaanxi, China

The application of shape memory alloys (SMA) as actuators in smart structures is a quickly developing field. The particular focus of this paper is on the aspects of modeling and simulation of adaptive structures with integrated SMAs using the finite element method (FEM). A number of generic SMA actuator wire/elastic beam systems are presented first to illustrate the different ways of ...

Modeling and Simulation of Control Valves via COMSOL Multiphysics®

S. Zhuang [1],
[1] CAEaid, Inc., Austin, TX, USA

Valves are widely used to control fluid flow in various engineering applications. It’s crucial to study the flow characteristics inside the valve and the fluid-structure interaction between the fluid and valve’s sleeve for design, optimization and improvement of valves. However, because of complex valve geometry, complicated contact status, large deformation, nonlinear material characteristics ...

The Non Linear Behavior of the Microplane Model in COMSOL

A. Frigerio[1]
[1]RSE, Milano, Italy

The safety of large civil structures is often evaluated by means of numerical models based on the Finite Element Method (FEM). In the last year, the elastic behavior of the Microplane Model was implemented in COMSOL because it is a promising approach able to overcome the limit typical of the classical approaches, which in general are able to simulate in a proper way only a few specific ...

The Swelling Responsiveness of pH-Sensitive Hydrogels in 3D Arbitrary Shaped Geometry

K. J. Suthar[1], D. C. Mancini[2], M. K. Ghantasala[3]
[1]Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
[2]Physical Sciences and Engineering, Argonne National Laboratory, Argonne, IL, USA
[3]Department of Mechanical Engineering, Western Michigan University, Kalamazoo, MI, USA

The pH-sensitive hydrogels are responsive to the pH of surrounding solution, which often resemble to biomaterials. Recently, pH-sensitive hydrogels are widely used in various devices as sensing media. We present the simulation of swelling characteristic of 3D-arbitarary-geometry, pH-sensitive hydrogel in steady state conditions. Three nonlinear partial-differential equations that are ...

Simulation of Microstructured Rolling-Sliding Contacts - new

M. Weschta[1], S. Tremmel[1], S. Wartzack[1]
[1]Engineering Design, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Bavaria, Germany

To reduce friction in lubricated tribological contacts, the surfaces of the contacting bodies can be microstructured to improve lubricating conditions. For lower loaded contacts this approach has already reached industrial applications, e.g. the piston-liner contact. For higher loaded contacts the effects are currently in basic research. Elastic deformation in the contact area plays an important ...

Virtual Commissioning of Large Machines with COMSOL Multiphysics® Software

K. Kryniski [1], A. Trangard [1],
[1] ABB Corporate Research, Västerås, Sweden

In addition to using advanced functions built-into the engine of the COMSOL Multiphysics® software, we integrate dynamic properties of rotating components that are measured or pre-computed. Here, it is shown how to integrate fluid-film characteristics and take advantage of post-processing and graphics to present the results to the customers using the Cloud. COMSOL® simulations of rotor-bearing ...

Thermo Mechanical Behavior of Heat Exchangers

A. Chidley, F. Roger, and A. Traidia
ENSTA Paristech, Palaiseau, France

Nowadays, to go along with sustainable development and for cost matters, automotive heat exchangers are built with less and less aluminum and the process costs are being cut. However, the real mechanical response is a plastic shakedown, which is why we need to model the cyclic response as well as to find a fatigue criterion. A finite element model was developed using COMSOL Multiphysics to ...

Study of Thermal Behavior of Thermoset Polymer Matrix Filled with Micro and Nanoparticles

B. Reine[1], J. Di-Tomaso[2], G. Dusserre[1], P. Olivier[1]
[1]Université de Toulouse, UPS, INSA, Mines Albi, ISAE, ICA, IUT, Dept. GMP, Toulouse Cedex, France
[2]RESCOLL - Société de Recherche, Pessac Cedex, France

This paper addresses the study of thermal behavior of thermoset polymer matrix filled with microparticles. A numerical model was developed with COMSOL Multiphysics to get a random spatial distribution of fillers in a representative volume element (RVE). This model was then compared to an analytical reference model (Hamilton model) and experimental results. This comparison highlights a good ...

Design and Simulation of a MEMS Directional Acoustic Sensor

S. L. Pinjare [1], V. S. Nagaraja [1], K. S. Rudresh [1],
[1] Department of ECE , Nitte Meenakshi Institute of technology, Bangalore, Karnataka, India

A Piezoelectric Directional Microphone is demonstrated based on a bio-mimetic design inspired by the parasitoid fly Ormia ochracea using the PiezoMUMPs multi-user foundry. The device simulation was conducted using COMSOL Multiphysics® software which achieves a directional sound field response and frequency band of 3.5 KHz to 4.5KHz. The sensitivity of the device is 3.8nV/pa.