Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling of Anisotropic Suede-like Material During the Thermoforming Process

G.Lelli[1], M. Pinsagli[1] , and E. di Maio[2]
[1]Alcantara S.p.A. (Application Development Center), Nera Montoro, Italy
[2]University of Naples "Federico II" (Department of Materials and Production Engineering), Naples, Italy

Physical and mechanical studies of Alcantara® have shown very pronounced anisotropic nonlinear features. Using constitutive equations borrowed from the modelling of biological tissues like tendons and/or arteries under the form of hyperelastic free-energy functions, a good representation of such mechanical features can be obtained. In particular, a combination between the optimization module ...

Simulation of Thermal Sensor for Thermal Control of Satellite Using COMSOL Multiphysics

G. Mangalgiri
Goa, India

The actuator comprises of a temperature sensitive composite deflecting beam, a piezoelectric substrate and a field effect transistor. The temperature rise causes an expansion in the composite beam thereby causing it to deflect. The deflecting beam impinges on the piezoelectric crystal and generating voltage. Response curves for the deflection versus temperature for temperature ranges ...

Assessment of Anterior Spinal Artery Blood Flow following Spinal Cord Injury

M. Alshareef[1], A. Alshareef[2], V. Krishna[3], M. Kindy[3], T. Shazly[4]
[1]College of Medicine, Medical University of South Carolina, Charleston, SC, USA
[2]Department of Biomedical Engineering, Duke University, Durham, NC, USA
[3]Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
[4]Department of Mechanical Engineering, University of South Carolina, Columbia, SC, USA

The incidence of spinal cord injury (SCI) in the US is approximately 12,000 individuals annually, due to various forms of trauma and disease. Diminished flow over a prolonged period of time can cause permanent spinal damage. We constructed a 3D finite element model of the spinal cord to examine the role of compressive loading on spinal blood flow. It was found that the type of forces on the ...

Multiphysics Modeling of Spring-Supported Thrust Bearings for Hydropower Applications

F.X. Borràs[1], J. Ukonsaari[2], A. Almqvist[1]
[1]Luleå University of Technology, Luleå, Sweden
[2]Vattenfall Research and Development, Luleå, Sweden

Spring-supported thrust bearings are used in huge rotor dynamic machines, generally to support the shafts from the biggest hydropower generators. Any attempt of modifying yhis type of thrust bearing implies huge investment and is associated with some risks. The goal of the present work is to predict the performance of spring-supported thrust bearings. With the model it is possible to carry out ...

Thermo-Mechanical Simulation of Dissimilar Titanium Alloys Laser Welding

A. Mathieu [1], L. Weiss [2], E. Fleury [2]
[1] Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), CNRS-Université de Bourgogne Franche-Comté, Dijon, France
[2] Laboratoire d’Etudes des Microstructures et de Mécanique des Matériaux (LEM3), CNRS- Université de Lorraine, Ile du Saulcy, Metz, France

A 3D thermo-mechanical simulation was developed using COMSOL Multiphysics software in order to predict distortion of a welded dissimilar titanium alloys structure. An angular distortion and a longitudinal shrinkage are predicted in agreement with those obtained experimentally.

Design and Analysis of Microcantilevers for Sensor Applications

R. Phadke [1], R. Pramodhini [1], A. Tiwari [2],
[1] Nitte Meenakshi Institute of Technology, Bengaluru, Karnataka, India

In this report, we present the design and analysis of microcantilevers of various shapes and materials for different applications. Here we investigate the sensitivity i.e. amount of bending of the cantilever due to same amount of force applied to each of the shape and the respective material using COMSOL Multiphysics software. In this context, we are restricted to the use of microcantilevers in ...

Modeling the Buckling of Isogrid Plates

E. Gutierrez-Miravete[1], and J. Lavin[2]
[1]Rensselaer at Hartford, Hartford, CT, USA
[2]UTC-Pratt & Whitney, East Hartford, CT, USA

Isogrid plate components are widely used in aerospace structures because of their greater stiffness to weight ratios compared with thicker plates of the same material. Isogrid plates consist of flat plates conjoined with thin ribs in specific geometric patterns. The purpose of this study was to investigate the applicability of COMSOL Multiphysics for the determination of buckling loads and modes ...

Evaluation of Low-Cycle-Fatigue Life of Solder Joints in Surface Mounting Power Devices by Finite Element Modeling

N. Delmonte[1], F. Giuliani[1], M. Bernardoni[2], P. Cova[1]
[1]Dipartimento di Ingegneria dell'Informazione, Università degli Studi di Parma, Parma, Italy
[2]CDTR - Centre for Device Thermography and Reliability, H. H. Wills Dept. of Physics, University of Bristol, Bristol, United Kingdom

The reliability of solder joints [1,2] is one of the key factors in the determination of the reliability of the high power density electronic converters, being the solder joints both the mechanical, the electrical, and often the thermal connections between the electronic component and the board in which the component is placed. The main mechanism by which solder joints are damaged is thermal ...

A Study of Geometrical Shape of Central Plate in Electrostatic Actuation

K. M. V. Swamy[1], B. G. Sheeparamatti[1], G. R. Prakash [1]
[1]Department of Electronics and Communication, Basaveshwara Engineering College, Bagalkot, Karnataka, India

This study is performed to know which central plate geometry is best suited for electrostatically actuated switch. The simulation is carried out in COMSOL Multiphysics, where user is free to model the geometry without depth knowledge about geometrical dependency of electrostatic. The study of the centrally suspended geometrical models such as circle, square and rectangle suspended by two short ...

Prediction of Magnetic Fields, Eddy Currents, and Loads in a Tokamak During a Disruption for Alcator C-Mod's Advanced Outer Divertor - new

J. Doody[1], B. Lipschultz[2], R. Granetz[1], W. Beck[1], L. Zhou[1], J. Irby[1]
[1]Massachusetts Institute of Technology, Plasma Science and Fusion Center, Cambridge, MA, USA
[2]York Plasma Institute, University of York, Heslington, York, UK

COMSOL Multiphysics® has been used to predict the magnetic fields, eddy current, lorenz forces and stresses during a disruption for the new Advanced Outer Divertor for the Alcator C-Mod tokamak. A tokamak is used to study magnetic confinement of plasma for fusion, and a disruption occurs when the plasma decays, rapidly losing all of its current. COMSOL has been used to recreate the fields ...