See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

Simulation Methods and Teachingx

Making Cartograms and Using them for Data Acquisition

P. Mercure[1], and R. Haley[2]
[1]The Dow Chemical Company, Midland, MI
[2]ATM Research, Midland, MI

We demonstrate cartogram construction, where a geographical map is distorted to represent some measure, for example population, while trying to keep the shape of regions recognizable. We then apply this cartogram construction technique to optimize thermocouple locations. A heat ... Read More

Multiphysics Simulations in Complex 3D Geometry of the High Flux Isotope Reactor Fuel Elements using COMSOL

J. Freels, and P. Jain
Oak Ridge National Laboratory
Oak Ridge, TN

A current research and development project is ongoing to convert the operating High Flux Isotope Reactor (HFIR) of Oak Ridge National Laboratory (ORNL) from highly-enriched uranium (HEU U3-O8) fuel to low-enriched uranium (LEU U-Mo) fuel. Because LEU HFIR-specific testing and experiments ... Read More

Finite Element Convergence for Time-Dependent PDEs with a Point Source in COMSOL 4

M. Gobbert, and D. Trott
University of Maryland Baltimore County
Baltimore, MD

Many application problems have non-smooth forcing terms, such as the Dirac delta function. The convergence order for the FEM solution is limited by the regularity of the solution in this case. This paper presents information on the techniques needed in COMSOL 4 to enable FEM convergence ... Read More

COMSOL-Based Nuclear Reactor Kinetics Studies at the HFIR

D. Chandler[1], J. Freels[2], R. Primm III[3], and G. Maldonado[1]
[1]Department of Nuclear Engineering, University of Tennessee, Knoxville, TN
[2]Research Reactors Division, Oak Ridge National Laboratory, Oak Ridge, TN
[3]Primm Consulting, LLC., Knoxville, TN

The computational ability to accurately predict the dynamic behavior of a nuclear reactor core in response to reactivity-induced perturbations is an important subject in reactor physics. Space-time and point kinetics methodologies were developed for the purpose of studying the transient ... Read More

Large Scale Simulation on Clusters Using COMSOL

D. Pepper[1], X. Wang[2], S. Senator[3], J. Lombardo[4], and D. Carrington[5]
[1]DVP-USAFA-UNLV
[2]Purdue-Calumet
[3]USAFA
[4]NSCEE
[5]T-3 LANL

Darrell Pepper is Professor of Mechanical Engineering and Director of the Nevada Center for Advanced Computational Methods at the University of Nevada Las Vegas (UNLV). He was recently appointed Distinguished Visiting Professor at the US Air Force Academy where he will be in residence ... Read More

Is Experimentation More Intuitive?

R. Venkataraghavan
Unilever R&D
Bangalore, India

Venkataraghavan is the Discover Category Leader, Water, working at the interface of Science, Technology and Business, for developing solutions and products for water purification at Unilever R&D, Bangalore. He joined Unilever in 2002 and earlier worked in interfacial science, ... Read More

Computational Building Physics using Comsol: Research, Education and Practice

J. van Schijndel
Eindhoven University of Technology,
Eindhoven, The Netherlands

Jos van Schijndel completed his MSc in 1998 at the Department of Applied Physics at the Eindhoven University of Technology (TUe). In 2007 he obtained a PhD degree at the TUe on integrated heat, air and moisture modeling. Currently, he is assistant professor focusing on Computational ... Read More

A General Method for Solving Equations - The Dynamical Functional Particle Method

M. Gulliksson, and S. Edvardsson
Mid Sweden University, Sundsvall, Sweden

Given any equation L(u)=0, e.g. a partial differential equation, it can be considered to be the stationary solution of a time dependent equation (in fact, time need only to be fictitious time not real time). Our approach is to choose the time dependence in analogy with an oscillating ... Read More

Conducting Finite Element Convergence Studies Using COMSOL 4.0

M.K. Gobbert, and D.W. Trott
University of Maryland, Baltimore, MD, USA

We will show how to carry out convergence studies of the FEM error on a sequence of progressively finer meshes in COMSOL Multiphysics on the example of Lagrange elements of varying polynomial degrees, which will also bring out the benefit of using higher order elements. The sample ... Read More

FEM Based Modeling In COMSOL Multiphysics and Design Of Control Of Distributed Parameter Systems

C. Belavý, and G. Hulkó, and K. Ondrejkovic, and D. Šišmišová
Slovak University of Technology in Bratislava, Bratislava, Slovakia

This paper presents a finite element method based modeling and design of control for distributed parameter systems. First, models of distributed parameter systems in the form of lumped-input/distributed-output systems and structure of control loop are introduced. Next, modeling of ... Read More