Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Fluid Exploration With CFD: an Engineering Teaching Tool

M. K. Smith
Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA

Computers are used every day to efficiently perform mathematical computations. For engineers to work efficiently, abstraction is necessary; this means hiding lower-level details of an algorithm to emphasize higher-level structure. In this presentation, the fluid exploration with CFD is explored. The presentation is based on a course held at Woodruff School of Mechanical Engineering.

Is Experimentation More Intuitive?

R. Venkataraghavan
Unilever R&D
Bangalore, India

Venkataraghavan is the Discover Category Leader, Water, working at the interface of Science, Technology and Business, for developing solutions and products for water purification at Unilever R&D, Bangalore. He joined Unilever in 2002 and earlier worked in interfacial science, materials science and electrodynamics for the Laundry Category. Venkataraghavan also had a stint with Unilever Technology ...

Multiphysics Software Applications in Reverse Engineering

W. Wang[1], K. Genc[2]
[1]University of Massachusetts, Lowell, MA, USA
[2]Simpleware, Exeter, United Kingdom

During the past decade reverse engineering has become a common and acceptable practice utilized by many aftermarket suppliers, and even original equipment manufacturers (OEM). This presentation focuses on the applications of multiphysics software such as COMSOL and Simpleware® in reinventing the design details and manufacturing processes of an existing part in the absence of the original design ...

Optimization of Micro-Structured Waveguides in Lithium Niobate (Z-Cut)

H. Karakuzu[1], M. Dubov[1], S. Boscolo[1]
[1] Aston University, Birmingham, UK

We present an optimization procedure to improve the propagation properties of the depressed-cladding, buried micro-structured waveguides formed in a z-cut lithium niobate (LN) crystal by high repetition rate femtosecond (fs) laser writing. It is shown that the propagation wavelength for which the confinement losses of ordinary (O) and extraordinary ordinary (E) polarizations are below 1 dB/cm ...

Skeletal Reduction of Boundary Value Problems over Thin Solids

Suresh, K.
University of Wisconsin – Madison

Boundary value problems posed over thin solids are amenable to a dimensional reduction in that one or more spatial variables may be eliminated from the governing equation, resulting in significant computational gains with minimal loss in accuracy. Extant dimensional reduction techniques unfortunately rely on representing the solid as a hypothetical mid-surface plus a possibly varying thickness. ...

Handling Tessellated Free Shape Objects with a Morphing Mesh Procedure in COMSOL Multiphysics®

P. Franciosa[1] and S. Gerbino[2]
[1]Faculty of Engineering, University of Naples Federico II, Napoli, Italy
[2]Faculty of Engineering, University of Molise, Campobasso, Italy

Tessellated models are more and more used in several engineering fields. The need to use such models to quickly perform computer simulations related to coupled physical phenomena, implies the use of dedicated software, allowing to solve, into an integrated environment, multiphysics problems. In the present work, COMSOL Multiphysics® has been used and its ability to handle tessellated models ...

Teaching Computer-aided Modeling of Biomedical Processes in an Upper Level Undergraduate Course using COMSOL Multiphysics

V. Rakesh, and A. K. Datta
Dept. of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA

Computer-Aided Engineering: Applications to Biomedical Processes is a three credit course intended for seniors and juniors in Biological Engineering and Mechanical Engineering at Cornell University with a class size of about 50-55 students.The course introduces finite element modeling using COMSOL Multiphysics to solve biological/biomedical problems to students with a background in transport ...

Investigations on Hydrodynamic in Stirred Vessels for Educational Purposes

A. Egedy, T. Varga, and T. Chován
University of Pannonia
Department of Process Engineering
Veszprém, Hungary

With detailed hydrodynamic modelling of a system the critical parameters and operation limits can be determined. In the field of fluid dynamic and reactor engineering one of the most important aspects is the practical knowledge of future engineers and technicians. In our research several different reactor constructions and impeller configurations were modelled to achieve a better ...

Making Cartograms and Using them for Data Acquisition

P. Mercure[1], and R. Haley[2]
[1]The Dow Chemical Company, Midland, MI
[2]ATM Research, Midland, MI

We demonstrate cartogram construction, where a geographical map is distorted to represent some measure, for example population, while trying to keep the shape of regions recognizable. We then apply this cartogram construction technique to optimize thermocouple locations. A heat generation and conduction model is used initialize the cartogram construction algorithm. A uniform distribution of ...

Thermo-Acoustic Analysis of an Advanced Lean Injection System in a Tubular Combustor Configuration

A. Giusti[1], A. Andreini[1], B. Facchini[1], F. Turrini[2], Ignazio Vitale[2]
[1]Department of Energy Engineering, University of Florence, Florence, Italy
[2]Avio, Turin, Italy

In this work a thermoacoustic analysis of a tubular combustor with an advanced lean injection system is presented. The performed analysis is based on the resolution of the eigenvalue problem related to an inhomogeneous wave equation which includes a source term representing heat release fluctuations (the so called Flame-Transfer-Function, FTF) in the flame region. The effect of the mean flow is ...

Quick Search