Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling of Tumor Location Effect in Breast Microwave Imaging using COMSOL

E. Khosrowshahli[1], and A. Jeremic[2]
[1]School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
[2]McMaster University, Dept. of Electrical and Computer Engineering, McMaster University,
Hamilton, ON, Canada

Microwave imaging has been recently proposed as a potentially useful screening technique for breast cancer. This method detects abnormalities in the tissue based on permittivity difference between breast normal and malignant tissue. In this method breast is illuminated by high frequency electromagnetic wave, and received waves are then analyzed in order to construct a map of breast\'s ...

太赫兹声子极化激元的产生及与金属天线的相互作用

吴强 [1], 潘崇佩 [1], 张琦 [1],
[1] 南开大学,天津,中国

“极化激元”是固体物理学中的重要概念,泛指各种极性元激发与光子的耦合。其中,声子极化激元是指晶格振动的声子与电磁场中的光子相互耦合的一种极化激元波。使用飞秒光在铁电晶体铌酸锂中通过光学非线性效应可产生声子极化激元,其频率位于太赫兹波段,在晶格的振动弛豫、太赫兹光谱、与介观微结构作用等领域已有广泛应用。 声子极化激元涉及电磁场和晶格场的耦合问题,其形式满足黄昆方程。我们使用 COMSOL Multiphysics® 的多物理场(偏微分方程组以及射频模块)模拟了块状铌酸锂晶体中产生声子极化激元波的产生和传输。 铌酸锂晶体作为太赫兹应用的集成化平台,可通过在平板波导上引入微结构实现对太赫兹波的调控。诸多手段中,太赫兹天线作为电磁场的传播场与局域场转换的关键部件,对太赫兹通信和太赫兹光谱等领域都有不可替代的作用。基于这一点,我们设计了一种尖端相对的棒状天线结构,使用 COMSOL ...

COMSOL Multiphysics® Simulation of Chiral Molecule Interaction with Chiral Structures

I. Zabkov[1], V. Klimov[2], A. Pavlov[2], D. Guzatov[3]
[1]MIPT, Moscow, Russia
[2]Lebedev Physical Institute, Moscow, Russia
[3]Yanka Kupala Grodno State University, Grodno, Belarus

Influence of chiral objects on spontaneous emission of atoms and molecules is under attention nowadays. The problem of interaction of chiral molecules with one [1] or two chiral [2] spheres was solved analytically recently by our group. The analytical results however are very difficult and needed to be calculated carefully. We modify the RF Module of COMSOL Multiphysics® in order to simulate ...

Low Cost All Optical Swept Source for Optical Communication Applications

J. T. Andrews[1], S. Chaurasiya[1], O. P. Chaudhary[1], D. Agarwal[1]
[1]National MEMS Design, Department of Applied Physics, Shri G S Institute of Technology & Science, Indore Madhya Pradesh, India

By introducing a periodic modulation in a waveguide, it is possible to create an interaction between forward-traveling and backward-traveling modes of an optical waveguide. Bragg grating may be a one dimensional diffraction grating which diffracts light from the forward-traveling mode into the backward traveling mode. Since the Bragg grating reflects at the wavelength for which it is ...

Launcher Design for Chemical Looping Combustion

F. Gao[1], D.W. Greve[1]
[1]Carnegie Mellon University, Pittsburgh, PA, USA

We report here on the use of the COMSOL emw (electromagnetic waves) module in the design of a microwave launcher. This launcher is to be used in a microwave Doppler sensor that is incorporated into a chemical looping combustion system. The launcher is designed in two steps. First, we determine the best mode for launching a wave into air from an overmoded cylindrical waveguide. he TE11 mode is ...

Universal Dielectric Response of Atmospheric Ice Using COMSOL Multiphysics®

U.N. Mughal[1], M.S. Virk[1], K. Zaman[1]
[1]Narvik University College, Narvik, Norway

Heterogeneous materials with different phases, are conductive and insulating (dielectric), and are physically present in different natural materials as e.g. atmospheric ice. Jonscher’s proposed ‘universal dielectric response’ is not sufficient for such materials, as it only reflects conductivity as a nonlinear function of frequency, whereas at lower temperatures dipolar vibrations are also very ...

Analysis of RF Characteristics of a Compound Semiconductor Device Integrated with a Wide-Band Antenna for THz Wireless Communications

A. Tashiro[1], M. Nakamura[1], M. Suhara[1]
[1]Tokyo Metropolitan University, Hachioji City, Tokyo, Japan

Use of the terahertz(THz) region, which is unexplored frequency band, is investigated and expected for the next-generation high-speed wireless communication. In this presentation, we propose a monolithic integrated device by using mesa-shaped compound semiconductor and a thin-metal broadband antenna which is capable in THz operation, and we analyze several characteristics of the device by using ...

Numerical Analysis on Plasmonic Nano-Cucumber Achieving Large EFs and Wide Tuneability of the Peak

A. Zare [1], E. Cutler [1], H. Cho [1],
[1] Center for Biomedical Engineering & Science, University of North Carolina - Charlotte, Charlotte, NC, USA

INTRODUCTION: Researchers in the biomedical field have recently become interested in the potential applications of plasomics. Surface plasmon resonance based on optical properties of metallic nanostructures can be used for detection of special biological targets. Gold nanostructures with different shapes and sizes have been designed to achieve high enhancement factor (EF), wide range of ...

Prospects of Multiphysics Simulations to Steer the Development of High Brightness LED Technologies

T. Lopez [1], O. Shchekin [1],
[1] Lumileds, Eindhoven, Netherlands

The versatility of COMSOL Multiphysics® software has positioned it at competitive levels against other considered industrial-standard engineering software tools. This contribution is directed towards emphasizing the need of further developing the basic concepts of this versatile tool in order to enable the implementation of complex physics modeling techniques in rapid, flexible and customized ...

Some Applications on the Fields of Laser, PCF and PCF-Sensor by COMSOL Software

J. Yao
Tianjin University, Tianjin, China

Academician Yao is an expert in nonlinear optics and THz studies and also a consultant of Chinese government for scientific development. In this talk, he introduces various research progress based on COMSOL Multiphysics analysis of his team, including photonic crystal devices (both telecom and THz band), THz lasers, nanophotonic devices, etc.. Moreover, he points out multiphysics analysis brings ...