Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Influence of the Excitation Frequency Increase up to 140 MHz on the VHF-PECVD Technology

S. Leszczynski[1], B. Leszczynska[1], M. Albert[1], J.W. Bartha[1], U. Stephan[2], J. Kuske[2]
[1]Dresden University of Technology, Semiconductor and Microsystems Technology Laboratory, Dresden, Germany
[2]Forschungs- und Applikationslabor Plasmatechnik GmbH, Dresden, Germany

The plasma enhanced chemical vapor deposition process with a linear plasma source and the frequency range up to 140 MHz developed by Dresden University of Technology and FAP GmbH Dresden enables a fabrication of thin film silicon layers at very high deposition rates. However, an increase of the plasma frequency reduces the electromagnetic wavelength. Therefore, the electric field distribution is ...

Multiphysics Design of ESS-Bilbao Linac Accelerating Cavities Using COMSOL

J. L. Munoz, and I. Rodriguez
ESS-Bilbao
Bilbao, Spain

A proton linac drives particles using the electric field of a high power RF standing wave in a resonant cavity. The design of these cavities involve several aspects of multiphysics simulation, that have been accomplished using COMSOL. The first step consist on the geometric optimization of the cavities in order to have the correct frequency while maximizing some figures of merit. This task ...

Cancer Detection Using Coagulation Therapy with Coaxial Antenna - new

S. M. Ali[1], A. K. Jha[1], S. Mahapatra[1], M. Panigrahi[1]
[1]Trident Academy of Technology, Bhubaneswar, Odisha, India

Nearly seven lakh Indians die of cancer, while over 10 lakh are newly diagnosed with some form of the disease every year. Surgical resection is not always feasible in patients with hepatocellular carcinoma. Microwave Coagulation Therapy (MCT) has been used as an alternative to resection and its efficiency has been evaluated in tissue microwave irradiation from a dipole antenna causes water ...

Plasma Scaling Leads the Transition from 2D to True 3D Models

J. Brcka [1],
[1] Tokyo Electron U.S. Holdings, Inc., Austin, TX, USA

Introduction: In inductively coupled plasma (ICP) systems the inductive antenna is coupled to the excited plasma inside the low pressure gas reactor. A multi-ICP system can be used for increased area processing and provide additional variables for controlling the plasma. However, assembling the source from individual sources changes the symmetry of the system. Simulation of plasmas in ...

Analysis of a Prototype MRI Hybrid Birdcage RF Coil with Uncertainty Quantification (*)

J. T. Fong [1],
[1] National Institute of Standards & Technology, Gaithersbug, MD, USA

1. INTRODUCTION. In a magnetic resonance imaging (MRI) system (see Fig. 1), it is necessary to excite the nuclei of a patient into coherent precession for imaging. This requires coupling between the nuclei and a source of radio frequency (RF) power (the transmitter). To receive a meaningful signal, one also needs to couple the nuclei to an external circuitry (the receiver). These two ...

A Study on the Suitability of Indium Nitride for THz Plasmonics

A. Shetty[1], K. J. Vinoy[1], S. B. Krupanidhi[2]
[1]Electrical Communication Engineering, Indian Institute of Science, Bangalore, India
[2]Materials Research Centre, Indian Institute of Science, Bangalore, India

As interest in the electromagnetic spectrum expands towards the infrared and terahertz range, the distinct advantages of using semiconductors instead of metals for plasmonic applications must be understood. Plasmonic resonances in gold (Au) and indium nitride (InN) gratings are studied, in the terahertz (?=30µm) regime. The electromagnetic properties of Au and InN are described by the Drude ...

Simulation of the Destruction Effects in CMOS-Devices caused by Impact of Fast Transient Electromagnetic Pulses

M. Rohe, S. Korte, and M. Koch
Institute for the Basics of Electrical Engineering and Measurement Science, Leibniz Universität Hannover, Germany

In this paper will be presented how an electronic system and its components will respond in case of an impact of an external electromagnetic pulse (EMP). In the first instance the coupling process of transient electromagnetic pulses into electronic systems will be shown. Out of that the disturbing signal inside the system, which is necessary for the following simulation, will be described ...

Plasmonic Properties of Bimetal Nanoshell Cylinders and Spheres

K. Ehrhold[1], S. Christiansen[1,2], and U. Gösele[1]
[1]Max Planck Institute of Microstructure Physics, Halle, Germany,
[2]Institute of Photonic Technology, Jena, Germany

Plasmonics is a new branch of the fascinating field of photonics and develops concepts to quench light beyond the diffraction limit and enhance electromagnetic fields. These enhancements occur in metals as localized surface plasmon polaritons (LSP) a coupling of the surface density oscillations of the electron gas to the incident light. With threedimensional nano-structures of coinage metals ...

The Spiral RF MEMS Switch in COMSOL Multiphysics

K. M. V. Swamy[1], B. G. Sheeparamatti[1], G. R. Prakash[1]
[1]Basaveshwara Engineering Collage, Bagalkot, Karnataka, India

This work presents the study of spiral RF MEMS switch which has low actuation voltage due to spiral structure. This work is inspired by the superior performance of electrostatic RF MEMS switches over the conventional state-of-the-art solid-state devices and the potential applications in communication field. The customary high actuation voltage limits the reliability and applications especially ...

Multiphysics Design of a Klystron Buncher

A. Leggieri [1], D. Passi [1], F. Di Paolo [1], G. Saggio [1]
[1] University of Rome, Rome, Italy

The Multiphysics design of a 130 GHz klystron Buncher cavity is described in this paper. In this high frequency range, dimensions are critical and expose the device to multiple physics effects, due to the power dissipations, affecting the electromagnetic performances. The proposed device is integrated with a carbon nanotube cold cathode in order to reduce thermal expansion and an opportune ...