Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

基于 COMSOL 的 e-SHM 系统齿轮的负压波损伤监测

王佳琪 [1],
[1] 上海交通大学,上海,中国

将结构健康监测(SHM)应用于机器结构故障检测是近些年发展的新方法,其优点是可以在线监控结构的“健康”状况。本文提出并研究了一种内嵌微管的高效结构健康监测(e-SHM)系统。结合快速成型技术,将微管嵌入结构内部,当对微管施加一定压力(真空或过压)时,闭合微管中的压力变化将变得极其敏感。当结构裂纹扩展到微管时,该处因压差瞬间产生压力变化,进而通过微管传播,最终信号被设置的压力传感器接收。通过实时监测微管的压力变化,便可实现结构裂纹的实时检测。本文的主要工作包括两个方面:(1)压力泄漏与负压波传播模型的设计与仿真。基于负压波的 e-SHM 系统齿轮的损伤监测的理论推导,包括负压波的产生原理和负压波在微管中的传播过程。建立了直管泄漏的负压波仿真模型,并在 MATLAB 环境下编程实现。基于传感压力二维曲线图分析了仿真结果的识别精度等级,验证了基于负压波的 e-SHM 系统的损伤监测的可行性。 ...

Design of an Electrodynamically Actuated Microvalve Using COMSOL Multiphysics® and MATLAB®

M. Williams, J. Zito, J. Agashe, A. Sopeju, and D. Arnold
University of Florida, Gainesville, USA

This paper describes the design of a normally closed, electrodynamic microvalve.  Magnetic forces between a permanent magnet in the valve cover and a soft magnet in the valve seat hold the valve closed.  The combination of electrodynamic actuation and a mechanical restoring spring are used to open the valve.  A device model and a design optimization strategy using COMSOL ...

Image Based-Mesh Generation for Realistic Simulation of theTranscranial Current Stimulation

R. Said[1], R. Cotton[1], P. Young[1], A. Datta[2], M. Elwassif[2] , and M. Bikson[2]
[1] Simpleware Ltd, Exeter, Devon, UK
[2] Department of Biomedical Eng., The City College of New York, New York, NY, USA

This paper will discuss the comprehensive solution adopted for converting the 3D digital/medical images directly into the computational model. The workflow using Simpleware Software – ScanIP and + ScanFE – will be illustrated including the option for directly exporting fully compatible models to COMSOL Multiphysics. The extra functionality that allows introduction, positioning and ...

Building a Robust Numerical Model for Mass Transport Through Complex Porous Media

J. Perko[1], D. Mallants[1], E. Vermariën[2], and W. Cool[2]
[1]Belgian Nuclear Research Centre (SCK-CEN), Mol, Belgium
[2]Belgian Agency for Radioactive Waste and Enriched Fissile Material (ONDRAF/NIRAS), Mol, Belgium

Mass transport modelling through porous media is typically characterized by complex physics and geometry. In the particular case of radionuclide transport, modelling for radioactive waste repositories, an additional level of complexity, and thus uncertainty, originates from the long time frames involved. Performing a safety analysis of a radioactive waste disposal system requires therefore ...

COMSOL Multiphysics Modeling of Rotational Resonant MEMS Sensors with Electrothermal Drive

S. Nelson[1], and M. Guvench[1]
[1]University of Southern Maine, Gorham, Maine, USA

COMSOL Multiphysics is employed to model, simulate and predict the performance of a high Q, in-plane rotational resonating MEMS sensor. The resonating sensor disk is driven by thermal expansion and contraction of the support tethers due to AC joule heating. The resonant frequency is sensed by stationary contacts. For cost reduction, the relatively simple, low cost SOIMUMPS fabrication process is ...

Image-Based Simulation of Electrical Impedance Techniques Applied on the Human Thorax for Cardio-Pulmonary Applications

F.K. Hermans[1], R.M. Heethaar[1], R.T. Cotton[2], and A. Harkara[2]


[1]VU University Medical Center, Amsterdam, The Netherlands
[2]Simpleware Ltd., Exeter, United Kingdom

For medical diagnostic purposes there is an increasing need for non- (or minimal) invasive techniques to measure all kinds of parameters that can provide insight in the functioning of cells, organs or organ systems. Currently, Impedance Cardiography (ICG) is used for measurements of the heart and Electric Impedance Tomography (EIT) is used for investigating lung tissue condition. This paper ...

A Modular Platform for Cell Characterization, Handling, and Sorting by Dielectrophoresis

S. Burgarella[1], B. Dell’Anna[2], V. Perna[1], G. Zarola[2], and S. Merlo[2]

[1]STMicroelectronics, Agrate Brianza, MI, Italy
[2]Dipartimento di Elettronica, Università degli Studi di Pavia, Pavia, Italy

Dielectrophoresis (DEP) is a method for cell manipulation without physical contact in lab-on-chip devices, since it exploits the dielectric properties of cells suspended in a microfluidic sample, under the action of locally generated high-gradient electric fields. The DEP platform that has been developed offers an integrated solution for customizable applications. Several functional units, ...

Simulating Superconductors in AC Environment: Two Complemetary COMSOL Models

R. Brambilla[1] and F. Grilli[2]
[1]ENEA - Ricerca sul Sistema Elettrico S.p.A., Milano, Italy
[2]Karlsruhe Institute of Technology, Karlsruhe, Germany

In this paper we present a summary of our work on numerical modeling of superconductors with COMSOL Multiphysics®. We discuss the two models we utilized for this purpose: a 2-D model based on solving Maxwell equations and a 1-D model for thin conductors based on solving the integral equation for the current density distribution. The latter is useful for modeling second generation High ...

COMSOL Multiphysics® Enhances Design Process at e2v technologies

Jan Przybyla
Technical Specialist, e2v technologies, England

Outline of presentation: We have seen a few of the diverse ways e2v has started to use COMSOL It is allowing us to view our processes in a different way Resulting in improvements It is enabling our engineers and scientists to examine the full application, not just the microwave or RF tube Resulting in: Complete product solution -with much added value Expected considerable growth in ...

Application of System Identification Methods to Implement COMSOL Models into External Simulation Environments

A.W.M. van Schijndel[1] and M. Gontikaki[1]

[1]Eindhoven University of Technology, Eindhoven, The Netherlands

Full coupling of distributed parameter models, like COMSOL, with the lumped models often lead to very time-consuming simulation duration times. In order to improve the speed of the simulations, the idea of using system identification methods to implement the distributed parameters models of COMSOL into external simulation environments, is explored. It is concluded that the system identification ...