Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Three-Dimensional Simulation of Signal Generation in Wide-Bandgap Semiconductor Radiation Detectors

J. E. Toney[1]
[1]Pennsylvania State University Electro-Optics Center, Freeport, Pennsylvania, USA

We demonstrate the use of Comsol Multiphysics with Matlab to model signal generation in wide-bandgap semiconductor radiation detectors. A quasi-hemispherical detector design is compared with a simple, planar detector. Results show that the quasi-hemispherical design can simply and effectively compensate for the poor hole transport of most compound semiconductor materials.

Control of Technological and Production Processes Modeled by COMSOL Multiphysics as Distributed Parameter Systems

G. Hulkó, C. Belavý, G. Takács, and P. Zajíček
Slovak Technical University in Bratislava, Bratislava, Slovakia

COMSOL Multiphysics is widely utilized in the modeling of dynamics of technological and manufacturing processes. At the same time the investigated technological and manufacturing processes are generally described by systems of partial differential equations as distributed parameter systems. This paper presents actual possibilities of control of systems modeled by COMSOL Multiphysics as ...

Modeling of the Impact of Blood Vessels Flow on the Temperature Distribution During Focused Ultrasound Exposure

K.C.P. Li, B.E. O'Neill, and E. Sassaroli
Methodist Hospital Research Institute, Houston, TX, USA

Focused ultrasound systems guided by magnetic resonance imaging (MRI) and thermometry have recently made possible the non-invasive thermal ablation of benign tumors such as uterine fibroids in clinical practice. Much more work is however required in order to make this technology available for the treatment of other forms of cancer. One of the major difficulties is associated with the presence of ...

Heat Flux Predictions for a 3-D Compost Model

M. Teutli [1], Jiménez[1], Lozano[1], Peláez[1], J. Roque[2], and I. González[3]
[1]BUAP, Puebla, Mexico
[2]Universidad Veracruzana, Xalapa, VZ, Mexico
[3]UAM, Mexico City, Mexico

A 3-D model for compost was constructed taking as geometry basis a truncated cone, with dimensions of 4 m radius and 3 m height; in this structure an energy balance is applied for a two phase system (solid-air). Compost energy processes are modeled using COMSOL with a modified heat transfer equation which includes: volumetric heat capacity, chemical oxidation and biological growing and ...

Hydro-Mechanical Modelling of a Shaft Seal in a Deep Geological Repository

D. Priyanto
Atomic Energy of Canada Limited, Pinawa, MB, Canada

The hydro-mechanical (HM) numerical simulation of a shaft seal installed at a fracture zone in a hypothetical host rock using COMSOL is presented. Two different stages are considered in the numerical modelling. Stage 1 simulates the groundwater flow into an open shaft. Stage 2 simulates the groundwater flow after installation of shaft sealing-components. The shaft sealing components include: ...

Variable Capacitance And Pull-In Voltage Analysis Of Electrically Actuated Meander-Suspended Superconducting MEMS

N. AlCheikh[1], P. Xavier[1], J.M. Duchamp[1], C.H. Boucher[2], and K. Schuster[2]
[1]Institute of Microelectronics, Electromagnetism and Photonics (IMEP-LAHC), Minatec, Grenoble, France
[2]Institute of Millimetric Radio Astronomy (IRAM), Grenoble, France

Variable capacitors between the fF and pF range are very interesting for high frequency applications like variable filters, resonators, etc. For radio astronomy applications variable capacitors, realized by electrostatically actuated, micromechanical Meanders-suspended bridges (MEMS) made of superconducting Niobium, have been measured to find C(V). A non plane capacitance behavior have been ...

Microwave Heating at the Grain Level

S. Lefeuvre[1], and O. Gomonova[2]
[1]Eurl Creawave, Toulouse, France
[2]Siberian State Aerospace University, Krasnoyarsk, Russia

The microwave heating and processing of heterogeneous material is usually simulated using a set of coupled PDE equations in an homogeneous medium. Nowadays it is possible to describe more accurately the process with a suitable description of the heterogeneities that is at the grain level. Many authors work with spheres (circles) to represent the grains but it is difficult to achieve an ...

Wavebased Micromotor for Plane Motions (3-DoF)

G. Jehle, D. Kern, and W. Seemann
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

This paper proposes the design of a 3-Degree of Freedom(DoF) motor based on surface acoustic waves in elastic solids. The rotor is propelled by wave fields, for linear and rotational motion respectively, in the stator, that can be steered by the driving signal of the piezoelectric actuators, which are placed on an elastic plate. The next considerations concern the feasibility of the proposed ...

Drying In Porous Media: Equilibrium And Non-Equilibrium Approaches For Composting Processes

A. Pujol[2], S. Pommier[3], G. Debenest[2], M. Quintard[2], and D. Chenu[1]
[1]Veolia Environnement, Limay, France
[2]IMFT, Toulouse, France
[3]INSA Toulouse, Toulouse, France

To understand origins and consequences of drying phenomenon during composting, a compositional drying model of a partially water-saturated porous media coupled with biodegradation has been developed. The different simulations carried out under COMSOL Multiphysics demonstrate the ability of the model to well describe the compositional drying of a partial water-saturated porous media and point out ...

Numerical Homogenization in Multi-scale Models of Musculoskeletal Mineralized Tissues

A. Gerisch[1], S. Tiburtius[1], Q. Grimal[2], and K. Raum[3]
[1]Technische Universität Darmstadt, Darmstadt, Germany
[2]Laboratoire d’Imagerie Paramétrique, UPMC, Paris, France
[3]Julius Wolff Institut & Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany

Musculoskeletal mineralized tissues (MMTs), e.g. bone, are hierarchical composite materials. Their effective elastic properties at different scales are of interest for computational studies of the MMT’s response to mechanical loading but also to realistically simulate implant osseointegration. We combine multi-scale and multi-modal experimental techniques with mathematical modelling of MMTs ...

2741 - 2750 of 3390 First | < Previous | Next > | Last