Quick Search

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Optimal Design of Flow Distributors for Detecting Blocked Microreactors

[1]Kyoto University, Kyoto, Kyoto, Japan

When the production capacity of micro chemical plants is increased by numbering-up approach, it is important to realize the uniform flow distribution among the parallelized microreactors. In addition, a blocked microreactor needs to be identified as early as possible to achieve the stable long-term operation of micro chemical plants. In this research, a system that can detect a blocked reactor by ...

Interaction between Light Wave and Asymmetric Metal/Insulator/Metal (MM) Structure Coupled with Subwavelength Holes at Optical Fiber Apex

Yasushi OSHIKANE[1]

[1]Osaka University, Suita, Osaka, Japan

Electromagnetic simulation of light wave interaction at around a tip of single mode optical fiber, which is formed of circular truncated cone shape, has been studied numerically by COMSOL Multiphysics and the RF Module (and Wave Optics Module). The fiber tip has specific nanostructure of asymmetric metal/insulator/metal (MIM) layers coupled with subwavelength holes. Behavior of surface plasmon ...

Modelling of Heat and Moisture Transport in a Corrugated Board Stack - new

M. Xynou[1]
[1]KTH Royal Institute of Technology, Stockholm, Sweden

Corrugated board is produced on a machine where the corrugated medium is glued between two flat paper surfaces, the liners. The board is cut into sheets and stored in a stack until suitable moisture content has been reached. The sheets are then cut and creased into blanks for the production of boxes and other products. If the moisture content is too high, there is a risk for cutting problems in ...

Simulation of Air Flow Through Ventilation Ducts - new

E. Dalsryd[1]
[1]KTH Royal Institute of Technology, Stockholm, Sweden

In this report I study the airflow through ventilation ducts. By numerical simulation, the so-called k-factor has been estimated. The k-factor is the quotient of the airflow volume and the square root of the pressure drop over the duct. A two dimensional axial symmetric model has been used to simulate an iris damper connected to a straight pipe. A three dimensional model has been used to ...

Modeling of Drying of Cellular Ceramic Structures: Coupled Electromagnetic and Multiphase Porous Media Model

A. Dhall[1], G. Peng[2], G. Squier[2], M. Geremew[3], L. Bogaczyk[2], J. George[3], W.A. Wood[3], and A.K. Datta[1]
[1]Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA
[2]Manufacturing Technology & Engineering, Corning Inc., Sullivan Park, Corning, New York, USA
[3]Corporate Research, Corning Inc., Sullivan Park, Corning, New York, USA

Cellular ceramic substrates are extensively used for pollution control systems in vehicles. The manufacturing process of them can involve microwave drying. In this study, we describe the development of a modeling framework for the microwave drying process of these substrates. The transport model is implemented in COMSOL 3.5a using 4 PDEs: 1) Convection-Conduction for temperature, 2) ...

Simulation and Evaluation of Small High-Frequency Side Scan Sonars Using COMSOL

J. Jonsson[1], E. Edqvist[1], H. Kratz[1], M. Almqvist[2], and G. Thornell[1]
[1]Ångström Space Technology Centre, Uppsala University, Uppsala, Sweden
[2]Department of Measurement Technology and Industrial Electrical Engineering, Lund University, Lund, Sweden

High frequency side-scan sonar, to be fitted on a miniaturized submersible explorer, have been simulated and built. The purpose of this study is to see if COMSOL Multiphysics® can be used to predict the performance of the sonar, especially the beam width, setting the resolution of the system. Four models were created, from simple 2-D geometries to more complex 3-D models. The simulated beam ...

Optimization of a Thermal Actuator for Low Power/Low Cost Applications

R. Zúñiga-Quesada[1], M. Vílchez-Monge[1], P. Vega-Castillo[1]
[1]Instituto Tecnológico de Costa Rica, Cartago, Costa Rica

This work describes the study of a thermal actuator and modifications to the materials employed in order to decrease power consumption and implementation costs. For this study, we worked on improving the thermal actuator described in the work of T. Ebefors. The criteria for choosing the new materials were lower power consumption, commercial availability, and ease processing. The thermal actuator ...

Computational Modeling of Magnetorheological Elastomers Using Soft and Hard Magnetic Particles

J. Biggs[1], P. VonLockette[1], and S. Lofland[1]
[1]Rowan University, Glassboro, New Jersey

Magnetorheological Elastomers (MREs) are a composite that consist of magnetic micrometer sized particles suspended within rubber matrix filler. By placing this material within an external magnetic field during the rubber curing process, the poles of the particles are forced to align and form chains of particles within the matrix. These chains cause the MRE to change its stiffness properties when ...

Study of Compliance Mismatch within a Stented Artery

G. Coppola, and K. Liu
Lakehead University, Department of Mechanical Engineering, Richmond, Hill, Ontario, Canada

The objective of this paper is to study the effects of compliance mismatch in a stented artery. COMSOL Multiphysics is used to tackle this challenging problem involving fluid-structure interaction. The particular effects studied in this paper are the radial displacement of the artery wall, pressure distribution along the studied segment, the factors affecting stress in the fluid and artery wall, ...

COMSOL Grab Bag: How to Use a Versatile CFD Code to Model Interesting Problems from Cryogenic Storage to Biofuel Production

Emily Nelson
Senior Research Engineer,
NASA Glenn Research Center, Cleveland, OH, USA

Emily Nelson received her PhD in Mechanical Engineering from the University of California at Berkeley. She is a senior research engineer at NASA Glenn Research Center and specializes in the formulation and solution of problems in microgravity science, multiphase flow, porous media, risk analysis, and gravitational biology. This leads her to fundamental and applied approaches on a range of issues ...

2741 - 2750 of 2861 First | < Previous | Next > | Last