Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Wall Effect on A Spherical Particle Settling along The Axis of Cylindrical Tubes Filled with Carreau Model Fluids

D. Song[1], R. Gupta[1], and R. Chhabra[2]
[1]Dept. of Chemical Engineering, West Virginia University, Morgantown, WV
[2]Indian Institute of Technology, Kanpur, India

The effect of finite boundaries on the drag experienced by a rigid sphere settling along the axis of cylindrical tubes filled with Carreau model fluids has been examined systematically over a wide range of condition. As expected, the presence of finite boundaries leads to an increase in the drag force exerted on a falling sphere thereby retarding its descent due to the obstruction caused by ...

HIIPER Space Propulsion for Future Space Missions

G. H. Miley[1], M. P. Reilly[2], B. Ulmen[3], P. Keutelian[3], and J. Orcutt[3]
[1]NPL Associates, Inc., Urbana-Champaign, IL
[2]Starfire Industries, Champaign, IL
[3]University of Illinois, Urbana-Champaign, IL

A coupled helicon/IEC plasma jet is in development for space propulsion applications. This device decouples the ionization and plasma acceleration process into separate stages. A realistic model is to consider a plasma media where the relative permittivity is negative or imaginary. Toward this end, COMSOL readily considers complex permittivity values, enabling a first attempt at modeling a ...

Design and Characterization of a MEMS Varactor

V. S. Nagaraja, N. Suma, and S. L. Pinjare
Nitte Meenakshi Institute of Technology

The tunable capacitor (variable capacitor) is one of the most important and components in filters, Phase shifters, VCO etc. A tunable capacitor can also be built using electro – thermal actuating mechanism. Compared to electro static, tunable capacitors actuated by thermal actuators have several advantages like lower driving voltages. The performance of thermal actuator becomes a key factor ...

Multiphysics Modeling and Simulation of MEMS Based Thermal Bimorph Sensor Array for Automated Solar Energy Storage Applications

K. Umapathi, V. K. Kanna, R. Gowthami, M. Alagappan, and A. Gupta
PSG College of Technology
Coimbatore
Tamil Nadu, India

Two bimorph array facing opposite to each other are designed and attached with metal micro plates. The micro solar cell (or) film can be placed on the top of each plate for storing the energy. With respect to the direction of sun light, one bimorph array receives more energy in the form of heat than the other and deflects accordingly. The deflection of the bimorph array depends on the material ...

FEM Based Estimation of Biological Interaction Using a Cantilever Array Sensor

S. Logeshkumar, L. Lavanya, G. Anju, and M. Alagappan
PSG College of Technology
Coimbatore
Tamil Nadu, India

In the model silicon nanorods are designed as cantilever array and coated with thin film of aluminum or aluminum nitride, to be characterized, thus, adding a detectable mass and altering the cantilever resistance to bending. The simulated results show that when films of different thickness are placed on the cantilever, there is a corresponding change in the resonant frequency and the ...

VLSI Layout Based Design Optimization of a Piezoresistive MEMS Pressure Sensors using COMSOL Multiphysics

R. Komaragiri[1], Sarath. S.[1], N. Kattabomman[1]
[1]NIT Calicut, Kozhikode, Kerala

This paper focuses on the diaphragm design and optimization of a piezoresistive Micro Electro Mechanical System (MEMS) pressure sensor by considering Very Large Scale Integration (VLSI) layout schemes. The aim of these studies is to find an optimal diaphragm shape by Finite Element Method (FEM) using COMSOL®, which is most suitable for VLSI layout. Optimal diaphragm shape is a diaphragm shape ...

COMSOL Simulations for Steady State Thermal Hydraulics Analyses of ORNL’s High Flux Isotope Reactor

P.K. Jain[1], V.B. Khane[2], J.D. Freels[1]
[1]Oak Ridge National Laboratory, Oak Ridge, TN, USA
[2]Missouri University of Science and Technology, Rolla, MO, USA

Simulation models for steady state thermal hydraulics analyses of ORNL’s HFIR have been developed using COMSOL. A single fuel plate and coolant channel of each type of HFIR fuel element was modeled in three dimensions. The standard k-? turbulence model was used in simulating turbulent flow with conjugate heat transfer. The COMSOL models were developed to be fully parameterized to allow ...

A Theoretical Model for the Control of Color Degradation and Microbial Spoilage Occurring in Food Convective Drying

S. Curcio[1], M. Aversa[1]
[1]University of Calabria, Department of Engineering Modeling, Rende, Cosenza, Italy

The aim of this work was the development of a predictive model aimed at identifying a proper control strategy of food drying process. In particular, it was intended to determine the effect of operating conditions both on the color degradation, chosen as a reference quality parameter, and on the microbial spoilage occurring during potatoes drying. A transport model, accounting for the ...

COMSOL Multiphysics Super Resolution Analysis of a Spherical Geodesic Waveguide Suitable for Manufacturing

H. Ahmadpanahi[1], D. Grabovi?ki?[1], J.C. González[1], P. Benítez[1], J.C. Miñano[1]
[1]Cedint Universidad Politécnica de Madrid, Madrid, Spain

Recently it has been proved theoretically (Miñano et al, 2011) that the super-resolution up to ? /500 can be achieved using an ideal metallic Spherical Geodesic Waveguide (SGW). This SGW is as a theoretical design, in which the conductive walls are considered to be lossless conductors with zero thickness. In this paper, we study some key parameters that might influence the super resolution ...

Modeling of Lead-acid Flow Battery

M. N. Nandanwar[1], S. K. Gupta[1]
[1]Indian Institute of Science, Bangalore, India

Failure of conventional lead-acid battery is attributed to degradation of solid active mass (PbO2 and PbSO4 ). A number of research efforts are underway worldwide to overcome degradation of active mass to improve the cycle life of lead-acid batteries. Soluble lead-acid flow battery (SLFB) is a new kind of lead-acid flow battery in which products of discharge remain in dissolved state. SLFB ...