Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

An Elastic and Hyperelastic Material Model of Joint Cartilage - Calculation of the Pressure Dependent Material Stress in Joint Cartilage

T. Reuter, and M. Hoffmann
fzmb GmbH
Research Centre of Medical Technology and Biotechnology
Bad Langensalza, Germany

In this paper we introduce a elastic and hyperelastic model to describe the pressure dependent material stress in joint cartilage. We used the pressure dependent E-modulus E = f(s) to calculate the material stress. E = f(s) is a degree 4 polynomial . The indentor was pressed 0.4 mm into the tissue. The results show that the maximal stress at the contact zone between indentor and cartilage ...

Modeling of Limestone Calcination Using Joule Heating

R. Kancharla, and M. Ramakrishna
Padmasri Dr. B.V.Raju Institute of Technology
Narsapur
Medak Dist, AP, India

The limestone calcination reaction is endothermic and will proceed only if the partial pressure of CO2 in the gas above the solid surface is less than the decomposition pressure of the CaCO3. As the reaction is endothermic, the conventional process for calcination uses coal firing in rotary kiln with limestone feed to get the desired temperatures. Microwave heating of limestone is proposed ...

Fluid Structure Interaction Applied to Upper Aorta Blood Flow

J. Anza[1], and M. Esteves[2]
[1]Department of applied mathematics, University of the Basque Country, Bilbao, Spain
[2]University of the Basque Country, Bilbao, Spain

This work deals with the computer simulation of the blood flow, the arterial wall deformation and their 3D bidirectional interaction, including initial stresses and root displacements. The flow is laminar and steady with flexible walls modeled with a hyperelastic Demiray material model. Poiseuille formula is used to check the bidirectional interaction. 2D axisymmetric and full 3D models have ...

Topology Optimization of Dielectric Metamaterials Based on the Level Set Method Using COMSOL Multiphysics

M. Otomori, and S. Nishiwaki
Kyoto University
Japan

This presentation shows a level set-based topology optimization method for the structural design of negative permeability dielectric metamaterials incorporating the level set boundary expression based on the concept of the phase field method, and its optimization algorithm implemented by COMSOL Multiphysics. Furthermore, several design examples are provided to confi rm the usefulness of the ...

Validation of Space Charge Laminar Flow in Diodes

M. Cavenago[1]
[1]INFN-LNL, Legnaro, Padova, Italy

The well known Pierce design of electron and ion diodes is the base of particle source extraction systems [1,2]. It was heavily studied up to 1960 with analog computing and it now offers us a known case against which to compare the precision of fluid and particle tracing codes. The ideal model assumes zero particle kinetic energy at cathode emission, which is well matched in many sources: the ...

Elasto-Plastic FEM Models Explain the Emplacement of Shallow Magma Intrusions in Volcanic Complexes

A. Bistacchi[1]
[1]Università degli Studi di Milano Bicocca, Milano, Italy

We present numerical models and field data that aid understanding of volcano-tectonic processes related to the propagation of inclined sheets and dykes under a stress field resulting from the inflation of a shallow magma chamber. Structural field data from the classical Cuillins cone-sheet complex (Isle of Skye) show that sheets have a constant average dip angle (45°), with pure dilational or ...

Electric Field Density Distribution for Cochlear Implant Electrodes

N.S. Lawand[1], J. van Driel[2], P.J. French[2]
[1]Electronic Instrumentation Laboratory (EILab), Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), Delft University of Technology, Delft, The Netherlands
[2]Delft University of Technology, Delft, The Netherlands

Cochlear Implants are implantable devices which bypasses the non-functional inner ear and directly stimulates the hearing nerve with electric currents thus enabling deaf people to experience sound again. Implant electrode array design is limited in electrode count, due to their large size in accordance to scala tympani (ST) with restrictions for deeper insertion in ST thus depriving access to ...

Impact Assessment of Hydrologic and Operational Factors on the Efficiency of Managed Aquifer Recharge Scheme

M.A. Rahman[1], P. Oberdorfer[1], Y. Jin[1], M. Pervin[1], E. Holzbecher[1]
[1]Department of Applied Geology, Geoscience Center, University of Göttingen, Göttingen, Lower Saxony, Germany

Due to increased demands on groundwater accompanied by increased drawdowns (ca. 2-3 meters/year), technologies that use alternative water resources have been suggested for Dhaka City, Bangladesh. Preliminary studies show that managed aquifer recharge (MAR) would help in optimal use of available water resources and to reduce adverse effects of pumping in the Dupitila aquifer of the city. In this ...

Reliability Enhancement of Bio MEMS based Cantilever Array Sensors for Antigen Detection System using Heterogeneous Modular Redundancy

L. S. Sundharam[1]
[1]Kumaraguru college of Technology, Coimbatore, Tamil nadu, India

The objective of the work is to propose a reliability enhancement model for antigen detection system (ADS) using bio MEMS based cantilever array sensors using heterogeneous modular redundancy technique. The reliability of the ADS is expressed in terms of the constituent sub systems which are heterogeneous not only in their respective structures and behaviors but also in their forms. The possible ...

Design of Microfluidic Device for Cellular Experiment Under Controlled Oxygen Tension

K. Funamoto[1], I.K. Zervantonakis[2], R.D. Kamm[2]
[1]Tohoku University, Sendai City, Miyagi, Japan
[2]Massachusetts Institute of Technology

Numerical simulation of oxygen tension was performed to develop a microfluidic device for three-dimensional real-time observation of cellular response under hypoxia. The optimal experimental condition was obtained through investigations of effects of parameters, such as device thickness and flow rates of media and gas, on oxygen tension.