Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Multiphysics Modeling of a Minimally Invasive Tissue Ablation Methodology

J. S. Crompton [1], J. Thomas [1], K. Koppenhoefer [1],
[1] AltaSim Technologies, Columbus, OH, USA

Necrosis of human tissue can typically be obtained by exposure to temperatures below 40°C or above +50°C. However, inherent variability in tissue properties, the complexity of tissue response and dissipation of thermal energy by local perfusion or blood flow can make the development of routine, predictable in-vivo approaches to produce necrosis difficult. Although a number of thermal ablation ...

基于 COMSOL 软件的硅通孔的多物理场分析

刘永磊 [1],
[1] 西安电子科技大学北校区机电工程学院,西安,陕西省,中国

硅通孔在实现高级集成系统中起着至关重要的作用,但是其发展受到多物理场耦合效应的极大阻碍。硅通孔的多物理场耦合过程非常复杂,热场分布、电磁场分布及结构分布是相关联、相互作用的。针对硅通孔的多物理场耦合问题,本文开展了硅通孔多物理场仿真分析研究。结合国内外在硅通孔多物理场本质研究的基础上,从多物理场耦合理论出发,建立单个硅通孔的多物理场分析模型。通过运用 COMSOL Multiphysics 软件进行建模如图 1,在稳态下选择相应的焦耳热和热膨胀接口进行仿真如图 2,经影响分析确定了硅通孔的一些结构参数,如二氧化硅隔层厚度取 0.8um,硅基质厚度取 5.5um,硅通孔高度取 83.6um。最后,选择焦耳热接口进行瞬态仿真,研究了电压周期函数的幅值大小和占空比对硅通孔温度变化的影响关系。数值结果表明,随着幅值的增大,最终稳定后,温度的波动范围和最高温度都将增大如图 3;随着占空比不断增大 ...

Numerical Demonstration of Finite Element Convergence for Lagrange Elements in COMSOL Multiphysics

M. Gobbert, and S. Yang
Department of Mathematics and Statistics, University of Maryland, Baltimore, MD, USA

The convergence order of finite elements is related to the polynomial order of the basis functions used on each element, with higher order polynomials yielding better convergence orders. However, two issues can prevent this convergence order from being achieved: the lack of regularity of the PDE solution and the poor approximation of curved boundaries by polygonal meshes. We show studies for ...

Finite Element Models of Elasto-Plastic Deformation in Volcanic Areas

D. Scandura, G. Currenti, and C. Del Negro
Istituto Nazionale di Geofisica e Vulcanologia Sezione di Catania, Catania, Italy

In volcanic areas, the presence of heterogeneous materials and high temperatures affect the rheological behaviour of the Earth's crust that calls for considering the anelastic properties of the medium surrounding the magmatic sources. A thermo-mechanical numerical model is performed for evaluating the temperature dependency of the elasto-plastic solution. Both temperature distributions and ...

Thermal Design of Power Electronic Devices and Modules

N. Delmonte[1], M. Bernardoni[1], P. Cova[1], and R. Menozzi[1]
[1]Dipartimento di Ingegneria dell’Informazione, University of Parma, Parma, Italy

This work describes a way to apply 3D Finite Element Analysis (FEA) to the thermal design of power electronic modules using simplified geometry models of the system components. The method here presented can overcome the problem of solving equation systems with a very high number of Degrees Of Freedom (DOF) due to complex geometry of a power module.

Energy Transformation Damping

G.S. Mulder[1]
[1]Leiden, The Netherlands

A model for material damping is presented in terms of internal friction and in terms of a variation of stiffness. In the latter case the idea is that the stiffness increases if elastic energy is stored and decreases if elastic energy is released. In case of a single mass spring system “stiffness” refers to the stiffness of the spring; in case of a continues object &ldquo ...

Negative Ion Beams and Secondary Beams

M. Cavenago[1], P. Veltri[2], E. Gazza[2], G. Serianni[2], and P. Agostinetti[2]
[1]INFN-LNL, Legnaro, Padova, Italy
[2]Consorzio RFX, Padova, Italy

The development of powerful negative ion sources requires precise and versatile simulation tools to predict the emittance of the extracted ion beams and the heat load on the electrodes. A first tool is a determination of the plasma beam interface which is accomplished by a set of macro based in the COMSOL Multiphysics environment. Notwithstanding the strong nonlinearities involved, a proper ...

Thermomagnetic Siphoning on a Bundle of Current-Carrying Wires

J.C. Boulware, and S. Jensen
Space Dynamics Laboratory, North Logan, UT, USA

Using COMSOL Multiphysics, studies were performed showing that thermomagnetic siphoning (TMS) is a sufficient manner of regulating the temperature of a bundle of current-carrying wires wrapped with a magnetorheological fluid (MRF) jacket. Because of Curie’s Law, the cooler MRF on the outside of the jacket is drawn towards the wires due to the induced magnetic field. The process continually ...

Electro-Thermo-Mechanical Finite Element Modeling to Investigate the Reliability of Automotive MOSFET Transistor

T. Azoui, P. Tounsi, and J.M. Dorkel
CNRS, LAAS, Toulouse, France

3D electro-thermo-mechanical finite element model of power vertical MOSFET used in the automotive industry is presented in this paper. The presented paper is a qualitative study of power device results from electro-thermo-mechanical simulation. This study particularly interested in the stress generated at the interface between the bonding wires and the source metallization to evaluate the ...

Thermal Analysis of Joule Heated Ceramic Melter

P. Goyal, V. Verma, R.K. Singh, and K.K. Vaze
Bhabha Atomic Research Centre, Mumbai, Maharashtra, India

High level radioactive waste (HLW) generated by nuclear fuel cycle is immobilized using glass melters. In Glass melters such as Joule Heated Ceramic Melter (JHCM) electrodes immersed in the glass generates heat by the joule heating due to electric current passing between electrodes through glass. For melter performance it is required to evlaute temperature distribution in the melter. Thermal ...