Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

COMSOL Multiphysics: Innovative Design and Engineering

S. Wang[1]
[1]Department of Mechanical Engineering, Kun Shan University of Technology, Tainan, Taiwan

Multiphysics simulation has been used extensively in our research for fluid flow and heat transfer applications. Our projects include: simulation of fluid dynamics in an active liquid heat sink for CPU cooling, impeller design for a pipe flow generator with computational fluid dynamics (CFD), investment casting with plastic rapid prototype patterns, phase change materials with rapid prototyping ...

Study on Electromagnetic Waves in the Terahertz Region Using COMSOL Multiphysics

T. Nishida[1]
[1]Shinshu University, Matsumoto City, Nagano, Japan

Electromagnetic waves in the terahertz (THz) region may be useful for non-destructive imaging and biosensing technology. This presentation shows the example of our research aimed at the development of application in the THz region. The result of comparing the FDTD method and COMSOL Multiphysics is demonstrated in the investigation of metamaterial and the photoconductive antenna.

Investigation of Transport Phenomena in Nanochannels and its Applications in Energy Conversion using COMSOL Multiphysics

Chih-Chang Chang[1]
[1]Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu, Taiwan

Well‐designed and controlled nanochannels are ideal physical modeling systems to study fluidics in a precise manner. Electrokinetics refers to transport phenomena related to the non‐electroneutral EDL, which is created to neutralize the surface charges produced on surface. Surface charges are produced by the dissociation of surface functional groups. We created a mathematical model of a ...

Phase-sensitive Microcalorimetry for Study of Low-level Radioactive Sources

H. Chen-Mayer[1], R. E. Tosh[1]
[1]NIST, Gaithersburg, MD, USA

Microcalorimetry for standardizing activities of radionuclide samples entails measurements of input power heat flow from the sample cell, with the radioactive sample compared to the reference cell under balanced conditions. The measurement is susceptible to noise due to drift and 1/f effects; thus, a better result might be expected with periodic insertion of the source into the sample chamber ...

A Computational Study of the Reynolds Piped flow Experiment

Sanidhya Painuli[1], Jayasankar Variyar[1]
[1]Vellore Institute Of Technology, School of Mechanical and Building Sciences, Vandalur Kelambakkam Road, Chennai, India

The study of interaction of fluid with matter assumes great significance for most engineering applications. The flow can be either turbulent or laminar, and different types of interactions arise out of these flow. In the introductory undergraduate course of fluid mechanics, a typical demonstration for these interactions is the Reynolds pipe flow experiment. Instabilities of various types like ...

Quantitative Analysis Design of MEMS Based Micropreconcentrator for Cancer Diagnosis

Sang-Seok LEE[1]

[1] Tottori University, Tottori, Tottori, Japan

We have proposed a high performance MEMS based microstructure array of micropreconcentrator (microPC) for breath diagnosis of cancer biomarkers. Our microPC has been designed based on quantitative analysis results, which gives explicit evaluation criteria for determination of microstructure array performance. We will present the quantitative analysis results performed by COMSOL Multiphysics ...

An Automatic Modeling Approach for Optimized Positioning of an Electrostimulative Implant in the Human Femoral Head - new

Y. Su[1], D. Kluess[1], W. Mittelmeier[1], M. Ellenrieder[1], U. van Rienen[2], R. Bader[1]
[1]Department of Orthopaedics, University of Rostock, Rostock, Germany
[2]Institute of General Electrical Engineering, University of Rostock, Rostock, Germany

Introduction Electromagnetic stimulation is a common therapy to support bone healing in cases of avascular necrosis or pseudarthrosis. An electrostimulative screw implant (Asnis III s-series screw in Figure 1) is used to stimulate bone regeneration in the treatment of femoral head avascular necrosis. To enable positive outcome of the treatment, optimal positioning of the electric implant is ...

Simulation of Air Flow Through Ventilation Ducts - new

E. Dalsryd[1]
[1]KTH Royal Institute of Technology, Stockholm, Sweden

In this report I study the airflow through ventilation ducts. By numerical simulation, the so-called k-factor has been estimated. The k-factor is the quotient of the airflow volume and the square root of the pressure drop over the duct. A two dimensional axial symmetric model has been used to simulate an iris damper connected to a straight pipe. A three dimensional model has been used to ...

Two Step Study of Flow in an Industrial Pulp Screen, Solved with the COMSOL Multiphysics® Mixer Module - new

R. Wetind[1]
[1]Wetind Technology AB, Alnö, Sweden

An industrial pulp screen is investigated. The dilute pulp is pumped through a screen barrier. In order to avoid the fiber network to plug, it is necessary to 1) fluidize the shear thinning pulp 2) expose the barrier with plug releasing pressure pulses. This work involves a 2-step study. Step 1: The full screen flow is simulated using Mixer Module Frozen Rotor k-. Essential pressure field ...

Thin Membrane Modelling for the Electrical Stimulation of Auditory Nerve

A. Grünbaum[1], S. Petersen[1], H.W. Pau[2], and U. van Rienen[1]

[1]IEF funded by DFG Research Training Group 1505/1 Welisa, University of Rostock, Rostock, Germany
[2]Otolaryngology “Otto Körner”, University of Rostock, Rostock, Germany

Modeling of 2-5 μm thin membranes into a cochlea with a width of 2 cm is computationally. The paper is focused on two approximative methods used to overcome this problem and in addition a simple model challenging of a plate capacitor with a thin membrane of different thickness in-between is presented. The results of simulations with both thin layer approximation methods are compared with ...

2711 - 2720 of 3222 First | < Previous | Next > | Last