Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Near-Field FEM Simulations: A Vital Tool for Studying Silver-Based Plasmonic Systems

R. Asapu [1], S. W. Verbruggen [2], N. Claes [3], S. Bals [3], S. Denys [1], S. Lenaerts [1],
[1] Department of Bioscience Engineering, DuEL Research Group, University of Antwerp, Antwerp, Belgium
[2] Department of Bioscience Engineering, DuEL Research Group, University of Antwerp, Antwerp, Belgium; Center for Surface Chemistry and Catalysis, KU Leuven, Leuven, Belgium
[3] Department of Physics, EMAT Research Group, University of Antwerp, Antwerp, Belgium

Silver nanoparticles are valuable in the field of plasmonics since silver has a higher field enhancement factor compared to other metals that possess plasmonic properties. The plasmonic properties of silver nanoparticles can be finely tuned to the incident light wavelength through their size, shape and dielectric environment, and they have long-term stability. In this work, an ultrathin polymer ...

Model of Biosensor based on Organic Electrochemical Transistors

A. Shirinskaya [1], Y. Bonnassieux [1], G. Horowitz [1],
[1] LPICM, CNRS, Ecole Polytechnique, Université Paris Saclay, Palaiseau, France

One of the most promising categories of semiconductor-based sensors is organic electrochemical transistor (OECT), which consists of three electrodes (Source, Drain and Gate) and two active layers: electrolyte and conductive polymer. Despite the fact that OECT attracts a lot of attention in the last years, appropriate physical and chemical coupled models to describe precisely the interaction ...

Optimal Installation Configuration of Thermoelectric Generators

Y. Kaymak [1], F. Mintus [1],
[1] VDEh-Betriebsforschungsinstitut GmbH, Düsseldorf, Germany

This paper presents a multiphysics model to the convective, conductive and radiative heat transfer for the thermoelectric modules (TEMs), which are used to convert heat flux into electrical current. The model basically consists of heat transfer in solids, heat transfer in thin shells, surface-to-surface radiation and non-isothermal turbulent flow. The developed model has a good agreement with ...

Analysis of Geometrical Aspects of a Kelvin Probe

I. Kuehne [1], S. Ciba [1], A. Frey [2],
[1] Heilbronn University, Kuenzelsau, Germany
[2] University of Applied Sciences, Augsburg, Germany

The presented analysis investigates the capacitance characteristic of a Kelvin probe regarding the geometrical transition from a movable electrode plate to a narrow tip. Moreover, predictions can be done concerning optimum geometry, sensitivity and suitable electrical measurement circuitry. A further aim of this study is to provide optimal tip geometries for different sized Kelvin probes. This ...

Molecular Hydrogen Tracking in an Electrolytic Polishing Process

L. M. A. Ferreira [1],
[1] CERN, Geneva, Switzerland

In a water based electrolytic polishing process, the formation of molecular hydrogen at the cathode is unavoidable and it can contribute to the formation of surface defects at the anode side. This paper presents the work to model and simulate the molecular hydrogen flow inside radio frequency cavity geometries and compares it with the presence, type and relative position of certain defects in ...

Model of Sub-Surface Heat Rejection in Alternative Cooling Systems

E. Holzbecher [1], T. Manchester [2],
[1] German University of Technology in Oman (GUtech), Halban, Oman
[2] Univ. Utrecht, Utrecht, Netherlands

A model is presented for heat rejection in the subsurface. Geometries of different dimension are coupled by linear and general extrusions. In that way it is possible to deal with multi-scale physical set-up. An example shows the high influence of groundwater flow.

Simulation of Thermomechanical Couplings of Viscoelastic Materials

F. Neff [1], T. Miquel [2], M. Johlitz [1],
[1] Universität der Bundeswehr München, Munich, Germany
[2] École polytechnique, Palaiseau, France

Using COMSOL Multiphysics® software, a new model was implemented with the Physics Builder functionality, which provides a thermomechanical coupling. It consists of two independent physics interfaces, one for the mechanical, viscoelastic behavior and one for the heat transfer. With the multiphysics coupling features it is now possible to add the effects of thermal expansion and dissipation or ...

Multiphysical Modeling of Calcium Carbonate Transportation in UV Disinfection in Water Treatment

E. R. Blatchley[1], and B.Z. Sun[1]
[1]Department of Civil Engineering, Purdue University, West Lafayette, IN, USA

Mineral precipitation on to the quartz surface of the lamp jackets in UV disinfection process (fouling) has been recognized as a major problem for UV radiation delivery during disinfection operation. Fouling behavior was observed to be induced thermally and influenced by hydraulic character of the UV disinfection configuration. Fouling process involves momentum, heat, and mass transport within ...

Study of Artificial Molecular Engines Action Through COMSOL Multiphysics® Program

L. Moro[1], F. Lugli[1], and F. Zerbetto[1]

[1]Department of Chemistry “G. Ciamician”, Università di Bologna, Bologna, Italy

Rotaxanes are a class of molecules recently developed in laboratory that have been heralded as possible molecular motors. The motor is constituted by a linear molecule (thread) and a ring-shaped molecule (macrocycle), which is free to move along the thread, switching between two, or more, energetically stable interaction points (stations). Molecular motors start their functioning far from ...

Laminar Thermal Mixing in Coating Flows

A. Haas[1], M. Scholle[1], A. Aksel[1], H.M. Thompson[2], R.W. Hewson[2], and P.H. Gaskell[2]

[1]Department of Applied Mechanics and Fluid Dynamics, University of Bayreuth, Bayreuth, Germany
[2]School of Mechanical Engineering, University of Leeds, Leeds, United Kingdom

Heat transfer in a plane shear flow configuration consisting of two infinitely long parallel plates is considered. In laminar flows over undulated substrates eddies can be generated due to the kinematical constraints. A closed form analytical solution for the velocity field, based on lubrication theory as well as a semi-analytic solution for the temperature field is derived for the creeping ...

2661 - 2670 of 3815 First | < Previous | Next > | Last