Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL News Magazine 2017

Fluid Motion Between Rotating Concentric Cylinders Using COMSOL Multiphysics® Software

P. L. Mills [1], K. Barman [1], S. Mothupally [1], A. Sonejee [1],
[1] Texas A&M University - Kingsville, Kingsville, TX, USA

Introduction Fluid flow patterns in research or process-scale equipment where a fluid is contained between concentric rotating cylinders in the absence of bulk axial flow has received notable attention in the field of fluid mechanics. Annular flows occur in many practical applications, such as in the production of oil and gas, fluid viscometers, centrifugally-driven separation processes, ...

The Design of a Multilayer Planar Transformer for DC/DC Converter with a Resonant Inverter - new

M. Puskarczyk[1], R. Jez [1]
[1]ABB Corporate Research Center, Krakow, Poland

Multilayer planar transformers are widely implemented in power electronic applications. The design process of these elements is complicated due to the complexity of a magnetic circuit and high frequency interactions between windings. Additionally, an analytical approach to the analysis (based on mathematical formulas) can be uncertain. The applied FEM method of the analysis can be a solution to ...

Magnetic Levitation System for Take-off and Landing Airplane – Project GABRIEL

K. Falkowski[1], K. Sibilski[1]
[1]Wroclaw University of Technology, Wrocław, Poland

In the paper will be presented the construction of passive magnetic suspension with superconductors. The system of magnetic suspension was designed for GBRIEL project. There is presented numerical test bench of passive magnetic suspension with superconductor. This kind of suspension was selected for generation of magnetic levitation forces in a sledge of take-off and landing system of an ...

Design and Analysis of MEMS Gyroscope

L. Sujatha[1], B. Preethi[1]
[1]Rajalakshmi Engineering College, Chennai, India

MEMS gyroscope technology provides cost- effective method for improving directional estimation and overall accuracy in the navigation systems. This paper presents a tuning- fork gyroscope (TFG) [1] with a perforated proof mass. The perforated proof mass used in the design enables the reduction of the damping effect. This MEMS based gyroscope was designed using COMSOL Multiphysics 4.2a. This ...

Exploratory FEM-Based Multiphysics Oxygen Transport and Cell Viability Models for Isolated Pancreatic Islets

P. Buchwald
Diabetes Research Institute and the Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA

Cellular-level oxygen consumption and cell viability models incorporating physiologically realistic assumptions and fully scaled 2D/3D geometries have been implemented in COMSOL Multiphysics for isolated pancreatic islets. Oxygen consumption was assumed to follow Michaelis-Menten–type kinetics and to cease when local concentrations fell below a critical threshold. Results are in good agreement ...

Modeling of Ultrasonic Transducers and Ultrasonic Wave Propagation for Commercial Applications Using Finite Elements with Experimental Visualization of Waves for Validation - new

D. R. Andrews[1]
[1]Cambridge Ultrasonics, Over, UK

Finite element (FE) modelling of ultrasonic propagation using COMSOL Multiphysics® simulations can be used to create images of waves. Unfortunately, in time-stepping solutions, it is possible for numerical instabilities to grow large and dominate the solution adversely. Any design of transducer that is based upon poorly-configured FE models is unlikely to perform as expected and will almost ...

CVD Graphene Growth Mechanism on Nickel Thin Films - new

K. Al-Shurman[1], H. Naseem[2]
[1]The Institute for Nanoscience & Engineering, University of Arkansas, Fayetteville, AR, USA
[2]Department of Electrical Engineering, University of Arkansas, Fayetteville, AR, USA

Chemical vapor deposition is considered a promising method for synthesis of graphene films on different types of substrate utilizing transition metals such as Ni. However, synthesizing a single-layer graphene and controlling the quality of the graphene CVD film on Ni are very challenging due to the multiplicity of the CVD growth conditions. COMSOL Multiphysics® software is used to investigate ...

The Virtual Aquarium: Simulations of Fish Swimming

M. Curatolo [1], L. Teresi [2],
[1] Department of Engineering, Università Roma Tre, Roma, Italy
[2] Department of Mathematics and Physics, Università Roma Tre, Roma, Italy

Our goal is to reproduce the key features of carangiform swimming by running 2D simulations which fully exploit the Fluid-Structure Interaction interface of COMSOL Multiphysics software. Fish swimming is an important area of research, with relevant developments on biomechanics, robotics and mathematical modeling. Usually, in fish swimming simulations, the motion of the fish is assigned, and much ...

Models for Simulation Based Selection of 3D Multilayered Graphene Biosensors

E. Lacatus [1], G. C. Alecu [1], A. Tudor [1],
[1] Politehnica University of Bucharest, București, Romania

At the forefront of a new generation of sensors graphene and graphene composite materials are intensively studied for medical and biosensing applications. The outstanding electrical, mechanical and quantum properties of graphene make them a promising material solution to overlap the existing gap between biological and non-biological systems into a continuum like-viscoelastic integrated model. ...

Multiphysics Simulation of Thermoelectric Systems - Modeling of Peltier-Cooling and Thermoelectric Generation

M. Jaegle
Fraunhofer-Institute for Physical Measurement-Techniques (IPM), Freiburg, Germany

Electro-thermal interaction is commonly considered only as a matter of joule heating. In addition, the Seebeck-, Peltier- and Thompson-Effects are significant in materials with high thermoelectric figure of merit Z. These thermoelectric materials have a high Seebeck-coefficient α, a good electric conductivity σ, and a poor thermal conductivity λ. They have widespread areas of ...