Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Study of AC Electrothermal Phenomena Models

S. Loire, and P. Kauffmann
University of California
Santa Barbara, CA

Recently, electrokinetic flows have raised the interest of the scientific community. Driving flow with an electric field leads to promising applications for mixing, concentration, pumping application in lab on chips. However, current models are still inaccurate and don\'t fit the measures. The simple decoupled model developed by Ramos et al does not predict velocities for all parameters. ...

Design Optimization of an Electronic Component with an Evolutionary Algorithm Using a MATLAB-COMSOL Based Model

E. Pelster, and D. Wenger
Wenger Engineering GmbH
Ulm, Deutschland

Electric construction components exposed to alternating high voltage have to withstand a significant amount of thermal loads and, resulting from the changes in Temperature , structural stresses. In order to achieve minimization of these loads, optimizing the geometry can be a helpful tool in the design process. In this study COMSOL is used to predict thermal and mechanical loads on a high ...

Elucidating the Mechanism Governing Particle Alignment and Movement by DEP

G. Zhang [1], Y. Zhao [1], J. Brcka [2], J. Faguet [2],
[1] Clemson University, Clemson, SC, USA
[2] Tokyo Electron U.S. Holdings, Inc., Austin, TX, USA

We have simulated alignment and movement of multiple particles under Dielectrophoresis (DEP) using the Particle Tracing Module in COMSOL Multiphysics® software with particle-particle interaction taken into consideration. We are able to do efficient modeling for both 2D and 3D cases. With this work, we are able to shed important insights into the process of pearl chain formation, antenna-like ...

Modelagem da Perda de Umidade da Banana Durante o Processo de Secagem

J. P. Wojeicchowski [1], A. P. Ramos [2], J. S. Sousa [1], L. G. Maciel [1], M. M. Pariona [1],
[1] Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brasil
[2] Universidad Peruana Unión, Juliaca, Peru

O objetivo deste trabalho foi modelar a perda de umidade de bananas Caturra com os modelos empíricos e com o software COMSOL Multiphysics, definindo os coeficientes convectivo de transferência de massa e difusivo. O valor obtido para coeficiente de difusão, com base no ajuste matemático da 2ª Lei de Fick para cilindros foi de 1,89.10-9 m²/s. O valor do coeficiente convectivo de transferência de ...

Simulation of Heating Sol-Gel Thin Film By Laser Pulse Train

J. Zhang[1], Y. Mizuyama[1], W. Xiong[2], Y. Zhou [2], and Y. Lu[2]
[1]Panasonic Boston Laboratory, Newton, MA, USA
[2]University of Nebraska, Lincoln, NE, USA

Simulation of laser pulse-train (25ns, 60 kHz and 3000 pulses) heating Sol-Gel thin film using COMSOL Multiphysics software is investigated. The results show two kinds of temperatures formed on film surface by laser pulse-train heating. One is a single pulse induced transient peak-temperature, which is up to ~1635oC on both Si and glass substrates. The other is the accumulated ...

Hydro-Mechanical Modelling of Infiltration Test for a Bentonite-Sand Mixture: Model Verification and Parameter Identification

M. Hasal[1], R. Hrtus[1], Z. Michalec[1], R. Blaheta[1]
[1]Institute of Geonics AS CR, Ostrava, Czech Republic

The first aim of our work is to create a hydro-mechanical model (HM) of unsaturated fluid flow in bentonite-sand mixture (BSM) MX-80. The second aim is to validate and calibrate the developed model by using the data from a laboratory infiltration test of BSM. The used multi-physics model combines Richards type unsaturated flow with diffusive vapour flow and (nonlinear) elastic response of the ...

Statistical Sensitivity Analysis of Li-ion Pouch Battery Cell Dimension and Design

A. Samba[1], N. Omar[2], H. Gualous[3], Y. Firouz[2], O. Capron[2], M. Abdel MonemO[2], J. Smekens[2], P. Van den Bossche[2], J. Van Mierlo[2]
[1]VUB ETEC, Brussel, Belgium and UCBN, LUSAC, Cherbourg, France
[2]VUB ETEC, Brussel, Belgium
[3]UCBN, LUSAC, Cherbourg, France

Multi-Scale and Multi-Dimensional (MSMD) modeling approaches have been proposed to simulate the thermal, electrical distributions and concentration behaviors of large size pouch cell. This approach is based on coupling of the energy balance with the Newman’s electrode model. Newman’s 1D electrochemical model is often used for small size batteries but not sufficient enough for large size where ...

Numerical Modeling of Sampling Airborne Radioactive Particles Methods from the Stacks of Nuclear Facilities in Compliance with ISO 2889 - new

P. Geraldini[1]
[1]Sogin Spa, Rome, Italy

The main objective of this study is to verify the compliance of an ongoing nuclear facilities stack design with the ISO 2889 requirements, during normal and off-normal conditions. In particular, with the numerical simulations, they have been identify well-mixed sample locations along the chimney and the compliance with the International Standard requirements as result of stack flow rate and ...

Rheological Behaviour of Single–Phase Non-Newtonian Polymer Solution in Complex Pore Geometry: A Simulation Approach

P. Idahosa[1], G. Oluyemi[2], R. Prabhu[2], B. Oyeneyin[2]
[1]IDEAS Research Institute/School of Engineering, Robert Gordon University, Aberdeen, United Kingdom.
[2]School of Engineering, Robert Gordon University, Aberdeen, United Kingdom.

One of the most important criteria for evaluating chemical enhanced oil recovery (EOR) processes that use polymers is its rheological behaviour which in turn account for other physical effects of adsorption and resistance factors during polymer-rock interactions. However, complete knowledge of behaviour of polymer solution in porous media has not yet been fully gained. A computational fluid ...

Hydrodynamics and Mass Transfer in Taylor Flow

F. L. Durán Martínez [1], A. M. Billet [1], C. Julcour-Lebigue [1], F. Larachi [2],
[1] Toulouse University, Toulouse, France
[2] Laval University, Quebec, Canada

In the present work, numerical simulations of a Monolith Reactor (MR) are carried out in order to develop a pre-design tool for industrial-scale reactors applied to highly exothermal reactions. The reacting circular channels (2-4 mm internal diameter) are coated with a few micron thick catalytic layer (washcoat), and host a gas-liquid segmented flow (the so-called Taylor flow) known to enhance ...