Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Investigation of Ion Interactions and Space Charge Effects in a Time of Flight Ion Trap Resonator

D. Bayat [1], I. Kjelberg [1], G. Spinola Durante [2], D. Schmid [3]
[1] CSEM SA, Neuchatel, Switzerland
[2] CSEM SA, Alpnach, Switzerland
[3] CSEM SA, Landquart, Switzerland

An ion trap resonator, used for mass spectrometry, is investigated. Simulations are used to define the stabilization criterion of ion trajectories by optimization of the electrode configurations. The ion interactions are investigated and shown to help in reduction of ion-diffusion. Space charge effects simulate the induced voltages on pickup electrodes.

Use of FEM in the Design of an HTS Insert Coil for a High Field NMR Magnet - new

E. Bosque[1]
[1]Applied Superconductivity Center, National High Magnetic Field Laboratory, Tallahassee, FL, USA

High temperature superconductors (HTS) allow larger current densities through coil wound electromagnets, which produce higher magnetic fields. A high field HTS insert demonstration magnet is being built with high field homogeneity (~1 ppm) for application in nuclear magnetic resonance (NMR). The HTS NMR system is inserted into the bore of an existing high field magnet. A compensating Helmholtz ...

Chip Drop After Silver Sintering Process

M.H. Poech[1], M. Weiß[1], and K. Gruber[1]

[1]Fraunhofer Institute for Silicon Technology, Itzehoe, Germany

Since a couple of years, sintering becomes more and more important for power electronics. To press a semiconductor under high temperature in silver paste on a substrate promises benefits for durability. Tests with semiconductors of different thickness expose some problems. After the cool down, some of them fall slightly from the substrate. Stress in the boundary layer, caused by different ...

Quench Propagation in 1-D and 2-D Models of High Current Superconductors

G. Volpini[1]
[1]LASA Lab., Milan Dept., Istituto Nazionale di Fisica Nucleare, Milano, Italy

The understanding of quench, or the sudden transition to the normal state of a high-current Superconductor (SC), is fundamental for the design of a SC magnet, and it is widely discussed in the literature. This paper presents some simple COMSOL models, which are compared with well-known approximate formulae and some experimental results. These models allow a more precise description than it is ...

Gate Control of Single-Electron Spins in GaAs/AlGaAs Semiconductor Quantum Dot

S. Prabhakar and J. Raynolds
College of NanoScale Science and Engineering, University at Albany, Albany, NY, USA

Non-charge-based logic is the notion that an electron can be trapped and its spin manipulated through application of gate voltages. Numerical simulations of Spin Single Electron Transistors (SSET) at University at Albany, aimed at practical development of post-CMOS concepts and devices is presented. We use COMSOL based multiphysics finite element simulation strategy to solve the Schrö ...

Design of Precision Magnetic Fields for Fundamental Neutron Symmetries - new

M. Higginson-Rollins[1], C. Crawford[2]
[1]Department of Electrical & Computer Engineering, University of Kentucky, Lexington, KY, USA
[2]Department of Physics & Astronomy, University of Kentucky, Lexington, KY, USA

The traditionally magnetic design process involves guessing at a reasonable conductor geometry, using finite element analysis (FEA) software to calculate the resulting fields, and modifying the configuration iteratively to reach an acceptable solution. Taking the opposite approach, we developed a method of calculating the conductor geometry as a function of the desired magnetic field. This ...

Electric Field Distributions and Energy Transfer in Waveguide-Based Axial-Type Microwave Plasma Source

H. Nowakowska[1], M. Jasínski[1], and J. Mizeraczyk[1,2]
[1]The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdansk, Poland
[2]Dept. of Marine Electronics, Gdynia Maritime University, Gdynia, Poland

In this paper, we examine changes of the electric field distributions in waveguide-based axial-type microwave plasma source (MPS) during tuning procedure. The distributions strongly depend on position of the movable short, so does the wave reflection coefficient of the incident wave. A method of determining tuning characteristics of the MPS consisting in treating the MPS as a two-port network, ...

Design of Arrayed Micro-Structures to get Super-Hydrophobic Surface for Single Droplet and Bulk Flow Conditions

A. Mall[1], P. R. Jelia[1], A. Agrawal[1], R. K. Singh[1], and S. S. Joshi[1]

[1] Department of Mechanical Engineering, Indian Institute of Technology Bombay, Maharashtra, India

Surfaces with water contact angle greater than 150º are super-hydrophobic in nature and possess extraordinary water repelling properties. Various researches on wettability of textured surfaces in recent years have shown that texturing surfaces with micron-sized and nanosized patterns improves their hydrophobicity to a great extent. This report aims at optimizing the dimensions of square ...

On the Influence of Cancellous Bone Structure upon the Electric Field Distribution of Electrostimulative Implants - new

U. Zimmermann[1], R.Bader[2], U. van Rienen[1]
[1]Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
[2]Department of Orthopaedics, University Medicine Rostock, Rostock, Germany

Since the 1980s, the accelerating effect of electromagnetic fields on bone regeneration is used to treat complicated fractures and bone diseases. At the University of Rostock, an electrostimulative hip revision system is developed, basing on the method of Kraus-Lechner. This method requires an electric fields between 5 and 70 V/m. The bone used for the simulations consisted of two homogenous ...

Use of COMSOL Multiphysics® for IAQ Monitoring in Cleanrooms - new

G. Petrone[1], C. Balocco[2]
[1]BE CAE & Test, Catania, Italy
[2]Department of Industrial Engineering, University of Firenze, Firenze, Italy

High levels of Indoor Air Quality (IAQ) in Operating Theatres (OT) is an important issue in order to contribute in prevention of Surgical Site Infections (SSI). Despite of specific plant layouts are applied for OT ventilation (e.g. unidirectional flow), the effective use conditions can heavily modify the design microclimate and air quality levels. Medical staff presence and movements and sliding ...

1 - 10 of 486 First | < Previous | Next > | Last