Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

A Study of Geometrical Shape of Central Plate in Electrostatic Actuation

K. M. V. Swamy[1], B. G. Sheeparamatti[1], G. R. Prakash [1]
[1]Department of Electronics and Communication, Basaveshwara Engineering College, Bagalkot, Karnataka, India

This study is performed to know which central plate geometry is best suited for electrostatically actuated switch. The simulation is carried out in COMSOL Multiphysics, where user is free to model the geometry without depth knowledge about geometrical dependency of electrostatic. The study of the centrally suspended geometrical models such as circle, square and rectangle suspended by two short ...

FEM Study on Contactless Excitation of Acoustic Waves in SAWDevices

A. K. Namdeo[1], N. Ramakrishna[2], H. B. Nemade[1,2], and R. P. Palathinkal[1]

[1] Department of Electronics and Communication Engineering, Indian Institute of Technology Guwahati, Assam, India
[2] Centre for Nanotechnology. Indian Institute of Technology Guwahati, Assam, India

In this paper a finite element method(FEM) study of a surface acoustic wave (SAW)device excited by electrostatic coupling method is performed by using COMSOL Multiphysics. We have modeled a Rayleigh wave type SAW device by choosing YZ Lithium niobate as the substrate. The effect of external radio frequency (RF) field to the SAW device is analyzed. The effect of distance between the contactless ...

Computational Micro Fluid Dynamics: Part 2: Case Study: Flow Patterning by Phase-shifted Electroosmotic Flows

F. Schönfeld
Institut für Mikrotechnik Mainz, Fluidik und Simulation, Mainz

In the second part of the presentation, we focus on the simulation of electroosmotic flows (EOF). Here we present a new method of generating complex flow patterns relying on the use of EOF in combination with specially designed delay loops. The plug retardation in the delay loop is described in terms of a basic network model and a detailed FEM model (COMSOL Multiphysics). Simulation ...

Development and Characterization of High Frequency Bulk Mode Resonators

H. Pakdast, Z. Davis
DTU Nanotech, Technical University of Denmark, Kgs. Lyngby, Denmark

This article describes the development of a bulk mode resonator which can be employed for detection of bio/chemical species in liquids.  The goal is to understand the mechanical and electrical properties of a bulk mode resonator device which exhibit high frequency resonance modes and Q-factor. A high resonance frequency is desirable because a small change in the resonator’s mass, for ...

Strong Magnetic Field and Its Application

Y. Song
Huazhong University of Science and Technology, Wuhan, China

High magnetic field research has yielded fruitful results. Since 1913, associated with the magnetic field there are 19 Nobel Prizes, including a prize for medicine, five chemistry prizes, and 13 physics prizes. In recent years, the international community under the conditions of strong magnetic field is very active in scientific research, involving many disciplines such as physics, chemistry, ...

Efficient Generation of Surface Plasmon Polaritons with Asymmetric Nano-structures

J. Chen
Peking University

This paper covers the following: * All-Optical Light Modulation of surface plasmon polaritons (SPPs) is achieved using asymmetric single nanoslits. A high on/off switching ratio of >20 dB and phase variation of >? were observed with the device lateral dimension of only about 2 ?m. * Efficient unidirectional excitation of SPP as well as beam splitting are achieved using the ...

Mechanical Model of RF MEMS Capacitor Structures

R. Chatim[1]
[1]University of Kassel, Kassel, Germany

In order to design an RF MEMS based device, it is beneficial to have information concerning mechanical behavior. For model verification purpose, solution offered by simulation software equipped with predefined physics application is one valuable way to provide initial reference. To avoid unwanted particular total strain in RF MEMS structures, a compensation layer can be utilized. When the number ...

3D Stationary and Temporal Electro-Thermal Simulations of Metal Oxide Gas Sensor Based on a High Temperature and Low Power Consumption Micro-Heater Structure

N. Dufour[1], C. Wartelle[2], P. Menini[1]
[1]LAAS-CNRS, Toulouse, France
[2]Renault, Guyancourt, France

The aim of this work was to simulate the electro-thermal behavior of a micro-hotplate used as a gas sensor, in order to compare the obtained results with a real structure. The structure has been designed in 3D and a stationary and a temporal study has been realized.

Analysis of Electroosmotic Flow of Power-law Fluids in a Microchannel(1D)

K. SriNithin[1]
[1]IIT Kharagpur, Kharagpur, West Bengal, India

Electroosmotic flow of power-law fluids in a slit channel(1D) is analyzed. The governing equations are the Poisson–Boltzmann equation, the Cauchy momentum equation, Generalized Smoluchowski equation and the continuity equation are used to get shear stress, dynamic viscosity, and velocity distribution. Simulations are performed to examine the effects of ?H, flow behavior index, double layer ...

AC Electrothermal Characterization of Doped-Si Heated Microcantilevers Using Frequency-Domain Finite Element Analysis

K. Park[1], S. Hamian[1], A. M. Gauffreau[2], T. Walsh[2]
[1]Mechanical Engineering Department, University of Utah, Salt Lake City, UT, USA
[2]Department of Mechanical, Industrial & Systems Engineering, University of Rhode Island, Kingston, RI, USA

This work investigates the frequency-dependent electrothermal behaviors of freestanding doped-silicon heated microcantilever probes operating under the periodic (ac) Joule heating. The transient heat conduction equation for each component (i.e., the low-doped heater region, the high-doped constriction region, and the high-doped leg region) is solved using the general heat transfer module for DC ...

Quick Search