Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Interfacing Continuum and Discrete Methods: Convective Diffusion of Microparticles and Chemical Species in Microsystems

J. Berthier
CEA-LETI, Department of Biotechnology, Grenoble, France

Convective transport of macromolecules or micro and nanoparticles in microsystems are usually predicted by solving the Navier Stokes equations for the carrier fluid and a concentration equation for the diffusing species. In the case of isolated particles or complicated geometries with extremely small apertures or microporous material, the concentration equation maybe replaced by a Monte Carlo ...

Princípio Calorimétrico Aplicado a Medição de Vazão - new

T. Cavalcanti[1], A. Lima[1], J. Neto[1]
[1]Universidade Federal de Campina Grande, Campina Grande, PB, Brasil

Introdução: A medição adequada de vazão de fluidos é de grande importância nos processos industriais, pois tem implicações diretas na qualidade, produtividade, segurança e eficiência dos processos. Assim, torna-se necessário compreendermos como os fluidos se comportam para baixas velocidades, podendo, dessa forma, projetar estruturas que possam trabalhar em uma faixa de operação mais larga ou ...

Design and Characterization of MEMS Based Accelerometers for Various Applications - new

R. Singh[1], M. Singh[2]
[1]National Institute of Technology Karnataka, Surathkal, Karnataka, India
[2]Indian Institute of Technology Delhi, New Delhi, Delhi, India

Today, MEMS based accelerometers are used in a variety of applications. To name a few, they are used in safety systems in automobiles, it has added a new dimension to miniaturization of devices, it has replaced traditional piezoelectric accelerometers, which were big and difficult to use. For its various applications, differing bandwidth (operating frequency range) and amplitude of vibration are ...

A Study of Lubricating Flows in MEMS Bearings

E. Gutierrez-Miravete[1], and J. Streeter[2]

[1]Department of Engineering and Science, Rensselaer at Hartford, Hartford, Connecticut, USA
[2]Optiwind, Torrington, Connecticut, USA

The bearing and shaft are part of a safe and arm device constructed as an assembly by a multi-layer additive/subtractive plating and planarization processes (EFAB technology). Devices are constructed by a multi-layer additive/subtractive planarization process. This paper evaluates the lubricating flow between the shaft and journal of the MEMS bearing for seven configurations. The pressure ...

Strong Magnetic Field and Its Application

Y. Song
Huazhong University of Science and Technology, Wuhan, China

High magnetic field research has yielded fruitful results. Since 1913, associated with the magnetic field there are 19 Nobel Prizes, including a prize for medicine, five chemistry prizes, and 13 physics prizes. In recent years, the international community under the conditions of strong magnetic field is very active in scientific research, involving many disciplines such as physics, chemistry, ...

COMSOL Computational Fluid Dynamics for Microreactors Used in Volatile Organic Compounds Catalytic Elimination

M. Olea[1], S. Odiba[1], S. Hodgson[1], A. Adgar[1]
[1]School of Science and Engineering, Teesside University, Middlesbrough, United Kingdom

Volatile organic compounds (VOCs) are organic chemicals that will evaporate easily into the air at room temperature and contribute majorly to the formation of photochemical ozone. They are emitted as gases from certain solids and liquids in to the atmosphere and affect indoor and outdoor air quality. They includes acetone, benzene, ethylene glycol, formaldehyde, methylene chloride, ...

Numerical and Experimental Evaluation for Measurement of a Single Red Blood Cell Deformability Using a Microchannel and Electric Sensors

K. Tatsumi[1]
[1]Kyoto University, Kyoto City, Kyoto, Japan

An electric micro-resistance sensor that can continuously measure the deformability of a single red blood cell (RBC) in a microchannel and a numerical model that can simulate the resistance and capacitance of the cell membrane and cytoplasm are developed and improved. The resistance signal pattern between the electrodes is measured to evaluate the feasibility of the present sensor, using the ...

Efficient Generation of Surface Plasmon Polaritons with Asymmetric Nano-structures

J. Chen
Peking University
China

This paper covers the following: * All-Optical Light Modulation of surface plasmon polaritons (SPPs) is achieved using asymmetric single nanoslits. A high on/off switching ratio of >20 dB and phase variation of >? were observed with the device lateral dimension of only about 2 ?m. * Efficient unidirectional excitation of SPP as well as beam splitting are achieved using the dielectric–film ...

Development of Stress Relief Suspensions for Micro-Machined Silicon Membranes

W. Kronast[1], U. Mescheder[1], B. Müller[1]
[1]Hochschule Furtwangen, Furtwangen, Germany

A new design concept for large (6 mm diameter) dynamically focusing silicon membrane mirrors using electrostatic actuation was realized. With this concept membrane buckling by residual compressive stress inside the membrane can be avoided. To eliminate the influence of residual stress (compressive or tensile) a membrane suspension with a novel stress relief design was developed by the use of ...

Experimentally Matched Finite Element Modeling of Thermally Actuated SOI MEMS Micro-Grippers Using COMSOL Multiphysics

M. Guvench[1], and J. Crosby[1]
[1]University of Southern Maine, Gorham, Maine, USA

In “Micro-Electro-Mechanical-Systems” shortly known as MEMS, one of the most important and effective principle of creating transduction of electrical power to displacement force is thermal expansion. A slim beam of MEMS material, typically Silicon, is heated by the application of electrical current via Joule heating; it expands and creates motion. In the design of many MEMS devices ...