See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

Heat Transfer and Phase Changex

Study of HVDC Grounding Systems Using Finite Element Methods

C. K. C. Arruda [1], A. A. Silveira [1], L. C. R. Vieira [1], F. C. Dart [1],
[1] CEPEL, Rio de Janeiro, RJ, Brazil

High Voltage Direct Current transmission (HVDC) is a suitable alternative for long distance transmission. During the years, the use of this technology has been increasing, which is one of the several reasons to improve methodologies in HVDC grounding systems. Unlike the usual approach ... Read More

Geometric Multigrid Solver and Experimental Validation in Laser Surface Remelting

M. M. Pariona [1], F. de Oliveira [1],
[1] State University of Ponta Grossa, PR, Brazil

INTRODUCTION The purpose of this work is to verify the effect of Multigrid method on the CPU time for the resolution of the heat transfer model, based on the Finite Element Method (FEM), in order to simulate the laser surface remelting (LSR) of the Al–1.5 wt.% Fe alloy. To accelerate the ... Read More

Optimization of Welding Parameters using 3D Heat and Fluid Flow Modeling of Keyhole Laser Welding

S. Gaied [1], M. Courtois [2], M. Carin [2], P. Le Masson [2]
[1] ArcelorMittal Global R&D, Montataire, France
[2] LUniv. Bretagne-Sud, Lorient, France

A Laser-welded blank (LWB) consists of steels of different thicknesses and/or grades welded together to produce a single blank prior to the forming process. LWB are mostly used in the automotive field where the high productivity of the laser welding process is an advantage. Numerical ... Read More

Simulation and Verification of Bionic Heat Exchangers with COMSOL Multiphysics® Software

A. Kremers [1], M. Pieper [1]
[1] Applied University Aachen, Aachen, Germany

Bionics is the scientific discipline between biology and technology. The aim of bionics is to recognize natural design principles and derive technical solutions. Natural structures have been optimized over generations by evolution. In most cases the minimization of the energy demand is a ... Read More

Topology Optimization of Thermal Heat Sinks

J. H. K. Haertel [1], K. Engelbrecht [1], B. S. Lazarov [2], O. Sigmund [2],
[1] Technical University of Denmark, Roskilde, Denmark
[2] Technical University of Denmark, Kgs. Lynby, Denmark

Introduction The topology optimization method is becoming increasingly popular as a design tool for multiphysics systems [1,2]. Topology optimization of fluid-thermal systems has been presented for example in [3] for forced convective heat transfer and in [4] for natural convection ... Read More

Topology Optimization of an Actively Cooled Electronics Section for Downhole Tools

S. Soprani [1], J. H. K. Haertel [1], K. Engelbrecht [1], B. S. Lazarov [2], O. Sigmund [2]
[1] Technical University of Denmark - Department of Energy Conversion and Storage, Roskilde, Denmark
[2] Technical University of Denmark - Department of Mechanical Engineering, Lyngby, Denmark

INTRODUCTION: Active cooling systems represent a possible solution to the electronics overheating that occurs in downhole tools operating on wireline, a cabling technology used to remotely control the downhole devices during oil and gas well interventions, in high temperature wells (150 ... Read More

Modeling a DC Plasma Torch with COMSOL Multiphysics® Software

Bruno Chine' [1], Manuel Francisco Mata [2], Ivan Vargas [3],
[1] School of Materials Science and Engineering, Costa Rica Institute of Technology, Cartago, Costa Rica
[2] School of Electromechanics Engineering, Costa Rica Institute of Technology, Cartago, Costa Rica
[3] School of Physics, Costa Rica Institute of Technology, Cartago, Costa Rica

Plasma torches are used in processing of materials and in energy industry for producing plasma. In a non-transferred arc plasma torch, an electric arc can be glowed by applying a direct current (DC) between the cathode and anode, both placed inside the torch. Then, the plasma (Fig. 1) is ... Read More

A Model of Heat Transfer in Metal Foaming

Bruno Chinè [1], Valerio Mussi [2], Michele Monno [3], Andrea Rossi [2],
[1] School of Materials Science and Engineering, Costa Rica Institute of Technology, Cartago, Costa Rica
[2] Macchine Utensili e Sistemi di Produzione, Piacenza, Italy
[3] Dipartimento di Meccanica, Politecnico di Milano, Milano, Italy

Metal foams are interesting materials with many potential applications. Foamed metals or alloys include gas voids in the material structure and therefore the density is introduced as a new variable, with the real possibility to modify ad hoc their physical properties. In the indirect ... Read More

Nusselt, Rayleigh, Grashof, and Prandtl: Direct Calculation of a User-Defined Convective Heat Flux

J. F. Hansen [1],
[1] Thoratec Corporation, CA, USA

When an electronic device is worn for extended periods, possibly in direct contact with human skin, heat must be safely transferred away from the device, without exceeding standards and regulatory temperature limits on the skin and on the exposed surfaces of the device. Heat transfer is ... Read More

Numerical Characterizations of Visco-Plastic Behaviour of the TA6V with Metallurgic Phase Change

V. Bruyere [1], C. Touvrey [2], P. Namy [1],
[1] SIMTEC, Grenoble, France
[2] CEA DAM, Valduc, Is-sur-Tille, France

In order to predict the residual mechanical state of assemblies during pulsed laser welding, mechanical and metallurgical behaviors of materials need to be precisely characterized. Based on experimental data and analyses [1], a numerical model is developed in COMSOL Multiphysics® ... Read More