Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Study of Energy Transfer Mechanism for a Synchrotron X-ray Gas Absorber with COMSOL Multiphysics

A. Martín Ortega [1], Y. Dabin [1], T. Minea [2], A. Lacoste [3]
[1] ESRF, Grenoble, France
[2] LPGP, Université Paris-Sud XI, Orsay, France
[3] LPSC, Université Joseph Fourier, Grenoble, France

The high power of X-ray beam delivered by synchrotrons and free electron lasers, up to 240 W/mm2, requires heat load management solutions to obtain the best performance from the optical elements which will shape the beam for its use in the experimental stations [1]. One solution is the use of gas attenuators: a tube filled with an inert gas, usually Argon or Krypton, is placed between X-ray ...

3D Modeling of Hydrogen Absorption in Metal Hydride Hydrogen Storage Bottles

R. Busqué [1], R. Torres [1], A. Husar [2], J. Grau [1]
[1] Escola Universitària d'Enginyeria Tècnica Industrial de Barcelona, Barcelona, Spain
[2] Institut de Robòtica i Informàtica Industrial CSIC-UPC, Barcelona, Spain

The storage of hydrogen as an absorbed element in metal hydride bottles is a promising technique for energy storage. In this work, a three-dimensional model of a charging process in a metal hydride container has been developed to simulate the absorption reaction and resultant heat and mass transport phenomena in metal hydride vessels. The model has been experimentally validated showing a good ...

Analysis of Coupled Dynamics of Molten Salt Reactors

V. Di Marcello, A. Cammi, and L. Luzzi
Department of Energy, Nuclear Engineering Division (CeSNEF), Politecnico di Milano, Milano, Italy

This paper presents a preliminary analysis of the coupled thermo-hydrodynamics and neutronics of circulating nuclear fuel systems in a nuclear reactor that adopts a molten salt mixture. This flows up through channels in a graphite moderated core and plays the role of both heat generator and coolant. A strongly coupled system is needed since the velocity pattern is affected by the neutron ...

Use of COMSOL as a Tool in the Design of an Inclined Multiple Borehole Heat Exchanger

E. Johansson[1], J. Acuña[1], B. Palm[1]
[1]Royal Institute of Technology KTH, Stockholm, Sweden

A field of connected boreholes can be used both for cooling, heating and storage purposes. The boreholes transfer heat to or from the ground, which over time changes the temperature in the ground. It is important that the borehole field is properly sized and evaluated before the construction. This study presents results from borehole field evaluations of inclined boreholes used for cooling ...

Heat-Sink Solution through Artificial Nanodielectrics for LED Lighting Application

N. Badi[1], R. Mekala[2]
[1]Department of Physics, Center for Advanced Materials, University of Houston, Houston, TX, USA
[2]Department of Electrical & Computer Engineering, University of Houston, Houston, TX, USA

Thermally conducting but electrically insulating materials are needed for heat-sink LED lighting applications. We report on a cost effective and innovative method based on creating core-shell nanoparticles in polymer with aluminum (Al) nanoparticles as the high thermal conductivity core and ultrathin aluminum oxide (Al?O?) as a capping shell. The solid oxide shell around the Al core prevents ...

Simulation and Experimental Validation of Direct Heating of Dhruva Fuel Rod for β Heat Treatment - new

B. Patidar, A. P. Tiwari[1], V. Patidar[1], M. M. Hussain[1], K. K. Abdulla[1]
[1]Bhabha Atomic Research Centre, Mumbai, Maharashatra, India

β heat treatment of Uranium rods is carried out for randomization of oriented grains (called texture) developed during hot rolling or hot extrusion operation. During this process, Uranium rods undergo heating of up to 740 Deg C followed by water quenching. The objective of this work is to see the feasibility of direct heating technique for heat treatment application. At present, heat treatment ...

Geometric Multigrid Solver and Experimental Validation in Laser Surface Remelting

M. M. Pariona [1], F. de Oliveira [1],
[1] State University of Ponta Grossa, PR, Brazil

INTRODUCTION The purpose of this work is to verify the effect of Multigrid method on the CPU time for the resolution of the heat transfer model, based on the Finite Element Method (FEM), in order to simulate the laser surface remelting (LSR) of the Al–1.5 wt.% Fe alloy. To accelerate the convergence of Single grid methods, Multigrid method (MG) was employed in order to reduce the CPU time. In ...

Heat Loss Evaluation of an Experimental Set-up for Predicting the Initial Stage of the Boiling Curve for Water at low Pressure

K. T. Witte[1], F. Dammel[2], L. Schnabel[1], and P. Stephan[2]
[1]Fraunhofer Institut Solare Energiesysteme - Department of Thermal Systems and Buildings, Freiburg, Germany
[2]Technische Universität Darmstadt - Institute of Technical Thermodynamics, Darmstadt, Germany

In this paper heat losses and gains are assessed for a specific measuring set-up improving the validity of performance data to accurately predict the initial stage of a boiling curve. Simulation focus on achieving results predicting real measuring data of a plain surface structure. Therefore, the relevant components of the measuring set-up have been implemented in a 2-D axisymmetric model ...

Modeling System Dynamics in a MEMS-Based Stirling Cooler

D. Guo, A. McGaughey, G. Fedder, M. Lee, and S. Yao
Carnegie Mellon University
Pittsburgh, PA

Micro-scale devices based on the Stirling cycle are an attractive choice for chip- and board-level electronics. A new Stirling cycle micro-refrigeration system composed of arrays of silicon MEMS cooling elements has been designed. COMSOL is used to evaluate the thermal performance of the system. Simulation of compressible flow and heat transfer with a large deformed mesh has been successfully ...

Thermal Analysis for the Solar Concentrating Energy and Induction Heating for Metals

A. Rojas-Morín[1], Y. Flores-Salgado[2], A. Barba-Pingarrón[1], R. Valdéz-Navarro[1], F. Mendéz[1], O. Alvarez-Brito[3], M. Salgado-Baltazar[1]
[1]Facultad de Ingeniería, Universidad Nacional Autónoma de México, Ciudad Universitaria, D.F. México
[2]DGTIC, Universidad Nacional Autónoma de México, Ciudad Universitaria, D.F. México
[3]Programa de Posgrado en Ingeniería, Universidad Nacional Autónoma de México.

In this paper, we simulated the heating of a work piece by coupling two heat sources. Concentrated solar energy was applied at the bottom of the work piece, which generated a heat flux from the parabolic solar dish concentrator. Subsequently, induction heating was applied, which generated Eddy currents that circulated through the work piece and heated the surface of the material. A numerical ...