Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Flow and Mixing in the Liquid between Bubbles

B. Finlayson[1]
[1]Department of Chemical Engineering, University of Washington, Seattle, Washington, USA

Mixing is characterized in liquids moving between bubbles when the bubbles are moving down a microfluidic channel. The shape is assumed based on fluid mechanical arguments and experimental observations, and the mixing is characterized for a variety of situations in two and three-dimensions. In COMSOL Multiphysics, an integration coupling variable was used by solving the problem in two dimensions ...

Multiphysics Process Simulation of Static Magnetic Fields in High Power Laser Beam Welding of Aluminum

M. Bachmann[1], V. Avilov[1], A. Gumenyuk[1], M. Rethmeier[1]
[1]BAM Federal Institute for Materials Research and Testing, Berlin, Germany

The article deals with the application of the Hartmann effect in high power laser beam welding of aluminum. The movement of liquid metal in a magnetic field causes electric currents which build a Lorentz force that decelerates the original flow. The numerical model calculates the influence of a steady magnetic field on partial penetration keyhole laser beam welding of aluminum. Three-dimensional ...

Wind Flow Modeling of Area Surrounding the Case Western Reserve University Wind Turbine

M. Fernandes[1], D. Matthiesen[1]
[1]Case Western Reserve University, Cleveland, OH, USA

The CWRU Turbine is a research turbine located in a urban campus in Cleveland, Ohio. This location may create turbulence, resulting in a possible loss in energy generation. This research attempts to answers the question of whether the wind flow is affected by the buildings or not. The surrounding buildings, which vary in height from 20 to 40 meters, may affect the wind patterns at the hub ...

Numerical Quasi Stationary and Transient Analysis of Annular Linear Electromagnetic Induction Pump

L. Goldsteins[1], L. Buligins[2], Y. Fautrelle[3], C. Biscarrat[1], S. Vitry[1]
[1]CEA Cadarache, Saint Paul lez Durance, France
[2]University of Latvia, Riga, Latvia
[3]Grenoble Institute of Technology, Grenoble, France

In this paper an axisymmetric model of annular linear electromagnetic induction pumps using numerical methods and four approaches (two transient and two quasi-stationary) with different complexity is studied. Comparison of integral characteristics is performed between numerical approaches and also with analytic estimations. Distributions of physical parameters over length and height of channel ...

Hydrodynamic and Thermal Modeling in a Deep Geothermal Aquifer, Faulted Sedimentary Basin, France

E. Malcuit[1], A.L. Gille[1]
[1]CFG Services, Orléans, France

Within projects of geothermal energy, we need hydrodynamic and thermal modeling to forecast the impacts of geothermal deep wells on existing wells. In case of pumping and reinjection of the geothermal fluid in a deep groundwater reservoir, located in a sedimentary basin with lateral and vertical lithology variations and major faults, it is fundamental to understand the behaviour of the ...

Increasing Heat Transfer in Microchannels with Surface Acoustic Waves - new

S. Berry[1]
[1]Massachusetts Institute of Technology: Lincoln Laboratory, Lexington, MA, USA

In this numerical study, surface acoustic waves (SAWs) are evaluated as a potential disruptive flow technology for enhancing heat transfer in microchannels. Using COMSOL Multiphysics® software, the physics governing acoustics, single-phase-fluid flow and heat transfer are coupled. The results show that acoustic streaming can disrupt the bulk fluid flow, creating rotating vortices within the ...

Transient Model of a Fluorine Electrolysis Cell

J. Vukasin [1], I. Crassous [1], B. Morel [1], J. Sanchez-Marcano [2], P. Namy [3]
[1] HRP, AREVA NC, France
[2] Institut Européen des Membranes - CNRS, France
[3] Simtec, France

In the nuclear fuel cycle, fluorine is produced by the electrolysis of the molten salt KF-2HF. It is a complex process to study since hydrofluoric acid and fluorine are hazardous and highly corrosive. A 3D-model of a lab-scale fluorine electrolysis cell has been developed to increase our understanding of this process, using the electric currents and the bubbly flow interfaces to simulate the ...

On The Purification Of Waste Waters Using Multi-Bore Filters: Simulation Of A Long-Term Filtration Stage

I. Borsi
Dipartimento di Matematica U. Dini, Universita' di Firenze, Italy

We present the progress of the simulation activity we are carrying out within the PURIFAST LIFE+ project. We first present the model we formulated to describe the macroscopic effects of the filtration process taking place in a multi-bore filter, focusing on the fouling phenomenon. In membrane-based filters the fouling phenomenon is the major reason of a decreasing filtration efficiency. ...

Calibration of MHD Flow Meter using COMSOL Multiphysics

S. Sahu[1], R. P .Bhattachryay[1], E. R. Kumar[1]
[1]Institute for Plasma Research, Bhat, Gandhinagar, Gujarat, India.

There is limited option for non-intrusive flow measurement of liquid metals at high temperature. Liquid metal flowing in a conduit along with the transverse magnetic field induces emf in the liquid metal. The emf developed; which has linear dependency on flow velocity; can be used for flow velocity estimation. In case of conducting conduit the emf can be measured at the conduit wall. The main ...

Prediction of Temperature and Thermal Stress in Plasma Sprayed Coatings - new

M. Raja[1] , G. Hiremath[1], K. Ramachandran[1], P.V.A. Padmanabhan[2], T.K. Thiyagarajan[2]
[1]Karunya University, Coimbatore, Tamil Nadu, India
[2]Bhabha Atomic Research Centre, Mumbai, Maharashtra, India

Plasma spraying is one of the prominent technologies for wear, corrosion and high temperature resistant coatings. The coating quality is very important to increase the performance of the components as well as to protect the outer surface of the component from external environment. The coating quality characteristics depend on many plasma process parameters. Among these parameters, distribution ...