Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling Magnetic Configurations for Improved Separations of Magnetic and Non-Magnetic Materials

S. Khushrushahi[1], T.A. Hatton[1], M. Zahn[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

Magnetic separation of magnetic liquid phases/particles from non-magnetic liquid phases/particles are needed for applications such as cleaning up oil spills by separating oil and water liquid phases or separating magnetic materials from non-magnetic materials in biomedical and microfluidic applications. Magnetic fluids (also called ferrofluids), in a magnetic field, experience a magnetic force ...

Hydro-Mechanical Modelling of Infiltration Test for a Bentonite-Sand Mixture: Model Verification and Parameter Identification

M. Hasal[1], R. Hrtus[1], Z. Michalec[1], R. Blaheta[1]
[1]Institute of Geonics AS CR, Ostrava, Czech Republic

The first aim of our work is to create a hydro-mechanical model (HM) of unsaturated fluid flow in bentonite-sand mixture (BSM) MX-80. The second aim is to validate and calibrate the developed model by using the data from a laboratory infiltration test of BSM. The used multi-physics model combines Richards type unsaturated flow with diffusive vapour flow and (nonlinear) elastic response of the ...

High-Resolution FSI Modeling of a High-Aspect Ratio Involute Flow Channel in the HFIR at ORNL

A. I. Elzawawy [1], J. D. Freels [2], F. G. Curtis [2, 3],
[1] Vaughn College of Aeronautics and Technology, East Elmhurst, NY, USA
[2] Oak Ridge National Laboratory, Oak Ridge, TN, USA
[3] University of Tennessee, Knoxville, TN, USA

The high flow rate within the HFIR cooling water flow channel causes the fuel plates to deflect which in turn, changes the coolant flow characteristics. This nonlinear feedback loop between the coolant and the fuel plate is the focus of the present simulation of the fluid-solid interaction between the coolant flow and the fuel plates to accurately predict the plate’s deflection using the Fluid ...

Simulation of a Nozzle in a Borehole

E. Holzbecher [1], F. Sun [2],
[1] German University of Technology in Oman, Muscat, Oman, Germany
[2] Georg-August-Universität, Göttingen, Germany

In boreholes nozzles have to be found advantageous to increase the infiltration rate of water into the subsurface ground. Studies and practice in the field shows that the infiltration of water into permeable aquifers can be improved, if the flow in the borehole is modified. Due to the nozzle the flow regime turns from linear to turbulent. CFD studies help to understand the physics of the ...

Scattering of mm-Waves by Turbulent Structures in Magnetically Confined Fusion Plasmas

O. Chellaï [1], S. Alberti [1], I. Furno [1], T. Goodman [1], M. Baquero [1]
[1] Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, Suisse

In magnetically confined fusion devices, electron cyclotron resonance heating (80-170 GHz) is characterized by a local RF-power deposition at the electron cyclotron resonance [1]. A mm-wave RF Gaussian beam is launched from a dedicated antenna and propagates through the highly turbulent scrape-off layer (SOL) at the edge of the confined plasma. Turbulence in the SOL is characterized by ...

Study of Electrochemically Generated Two-Phase Flows

J. Schillings [1], O. Doche [2], J. Deseure [1],
[1] LEPMI, Grenoble, France
[2] SIMAP, Grenoble, France

The dependency of electrochemical processes performances on mass transfer is well-known. Electrolyte flow in the vicinity of electrodes surface can enhance reactions due to increased mass transfer. This flow can be generated by the production of a gaseous phase, leading to a natural bubble-driven convection flow. As a drawback, gas bubbles also modify electrodes active surface and the ...

Modeling of Near-Field Ultrasonic Levitation: Resolving Viscous and Acoustic Effects

I .F. Melikhov [1], A. S. Amosov [1], S. A. Chivilikhin [2],
[1] Corning Scientific Center, Saint Petersburg, Russia
[2] ITMO University, Saint Petersburg, Russia

Ultrasonic levitation is a novel technology for contactless handing of various objects. It is already used in various manufacturing processes where it is important to keep untouched surface. In this paper we introduce a model of so-called near-field ultrasonic levitation which allows flying heights of the hundred-micron order. Our model computes air flow in the gap between a vibration source and ...

A Non-Newtonian Model for Blood Flow behind a Flow Diverting Stent

G. Mach [1], C. Sherif [2], U. Windberger [3], A. Gruber [3],
[1] Vienna University of Technology, Cerebrovascular Research Group Vienna, Vienna, Austria
[2] Hospital Rudolfstiftung, Cerebrovascular Research Group Vienna, Vienna, Austria
[3] Medical University Vienna, Cerebrovascular Research Group Vienna, Vienna, Austria

Usually, when calculating the blood flow in cerebral arteries and intracranial aneurysms, blood is modeled as a Newtonian fluid, neglecting its shear-thinning behavior. Since flow diverting devices slow down the blood flow in the aneurysm sack, the accuracy of this assumption had to be reviewed. A Carreau Yasuda model is introduced as a non-Newtonian model for blood viscosity. CFD simulations of ...

A Preliminary Approach to the Neutronics of the Molten Salt Reactor by Means of COMSOL Multiphysics®

V. Memoli[1], A. Cammi[1], V. Di Marcello[1], and L. Luzzi[1]
[1]Nuclear Engineering Division, Department of Energy, Politecnico di Milano, Milano, Italy

The Molten Salt Reactor (MSR), proposed along with other five innovative concepts of fission nuclear reactor by the Generation IV International Forum (GIF-IV), represents a challenging task from the modeling perspective because of the strong coupling between neutronics and thermo-hydrodynamics due to liquid fuel circulation in the primary loop. In this paper COMSOL Multiphysics® is adopted to ...

Particle Tracing: Analysis of Airborne Infection Risks in Operating Theatres

P. Apell[1], S. Hjalmarsson[1], T. Lindberg[1], I. Wernström[1], Y. Tarakonov[1], A. Erichsen Andersson[2], M. Karlsteen[1]
[1]Department of Applied Physics, Chalmers University of Technology, Göteborg, Sweden
[2]Sahlgrenska University Hospital, Department of Anesthesia, Surgery and Intensive Care, Göteborg, Sweden

Patients undergoing surgery are sensitive to infections. The operation staff may spread 10^4 particles per person per minute, of which ten percent are presumed bacteria-carrying. We visualize the influence of the personnel on the air and particle flows for the two most common ventilation systems in Swedish hospitals using Comsol Multiphysics with particle tracing.. The Laminar Air flow ...