Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Three-Dimensional Numerical Study of the Flow Past a Magnetic Obstacle

M. Rivero[1], O. Andreev[2], A. Thess[3], S. Cuevas[4], T. Fröhlich[1]
[1]Institute of Process Measurement and Sensor Technology, Ilmenau University of Technology, Ilmenau, Germany
[2]Helmholtz-Zentrum Dresden-Rossendorf e. V., Institut für Sicherheitsforschung Abteilung Magnetohydrodynamik, Dresden, Germany
[3]Institute of Thermodynamics and Fluid Mechanics, Ilmenau University of Technology, Ilmenau, Germany
[4]Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco, Morelos, México

Flows of electrically conducting liquids in external magnetic fields are present in several applications. In this kind of flow, the inhomogeneous magnetic field creates a breaking force on the conducting fluid. As a result, a stagnant zone is formed in the zone affected by the localized field so that the fluid flows around it. Wakes in magnetohydrodynamic flows present interesting challenges ...

Modeling of Straight Jet Dynamics in Electrospinning Process

R. Pandya [1], A. Kumar [2], V. Runkana [1],
[1] Tata Research Development and Design Centre, Tata Consultancy Services, Pune, India
[2] Indian Institute of Technology, Delhi, India

Electrospinning is a process where high voltage is applied to produce polymer fibers of nanoscale diameter. Various polymers have been used for this process in molten form or as a solution with an appropriate solvent such as glycerol. The melt solidifies while the solvent evaporates to produce fibers. The fibers produced have properties such as high surface to volume ratio and a molecular ...

MCA 动脉瘤血流动力学分析

刘孟杰 [1], 付芳芳 [2], 李萌 [1]
[1] 郑州大学,郑州,河南,中国
[2] 郑州大学附属省人民医院,郑州,河南,中国

动脉瘤破裂是引起蛛网膜下腔出血的一种主要原因。结合 COMSOL Multiphysics® 灵活的几何建模特性以及强大的流体仿真求解能力,本文分别对两组不同大小关系的 MCA 动脉瘤理论模型进行了仿真建模分析。通过模拟分析,获得了动脉瘤球囊体长度和宽度与动脉瘤基底宽度不同比例条件下的动脉瘤速度、压力、壁面切应力(WSS)等参数的变化规律,分析了几何形态与动力学参数之间的关系。模拟结果显示:1、宽颈动脉瘤,瘤体内部旋流强度较之窄颈动脉瘤更强,中心区流速更低,更有利于形成血栓而且顶点处压力更大,更易破裂。2、增大动脉瘤宽度与基底直径的比值,顶点处 WSS 呈非线性增长,但最大值低于 WSS 安全范围的下限值,破裂危险性依然很高;3、动脉瘤宽度与基底直径不同比例下的最大的 WSS 均是主要集中在动脉瘤与载瘤血管结合处(第一剪应力集中区),对血管壁生物组织力学特性影响严重;WSS ...

Simulating Forced Convection in a Bingham Plastic Fluid

E. Tejaswini [1], B. Sreenivasulu [1], B. Srinivas [1],
[1]Gayatri Vidya Parishad College of Engineering, Visakhapatnam, Andhra Pradesh, India

In this work, the heat transfer characteristics of two heated cylinders of square cross-section immersed in a streaming Bingham plastic medium have been studied. The governing differential equations (continuity, momentum and thermal energy) have been solved numerically over wide range of conditions as: plastic Reynolds number, 0.1 ≤ Re ≤ 40, Prandtl number, 1 ≤ Pr ≤ 100, Bingham number, 0 ≤ Bn ≤ ...

Assessment of Anterior Spinal Artery Blood Flow following Spinal Cord Injury

M. Alshareef[1], A. Alshareef[2], V. Krishna[3], M. Kindy[3], T. Shazly[4]
[1]College of Medicine, Medical University of South Carolina, Charleston, SC, USA
[2]Department of Biomedical Engineering, Duke University, Durham, NC, USA
[3]Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
[4]Department of Mechanical Engineering, University of South Carolina, Columbia, SC, USA

The incidence of spinal cord injury (SCI) in the US is approximately 12,000 individuals annually, due to various forms of trauma and disease. Diminished flow over a prolonged period of time can cause permanent spinal damage. We constructed a 3D finite element model of the spinal cord to examine the role of compressive loading on spinal blood flow. It was found that the type of forces on the ...

Transport of Cadmium through Molten Salt to Argon Cover Gas in Electrorefiner

K.Revathy[1], S. Agarwal[1], B. Muralidharan[1], G. Padmakumar[1], K. K. Rajan[1]
[1]Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, India

Electro refining is one of the important step in the Pyro processing nuclear spent fuel with molten salt. The electro refiner is a process vessel consists of anode ,cathodes and stirrers and ultra –high pure argon gas is provided at the top for inert atmosphere and at the bottom a cadmium layer is provided. The vapor pressure of the cadmium is high at the operating temperature, the cadmium vapor ...

Modeling Self-Potential Effects during Reservoir Stimulation in Enhanced Geothermal System - new

G. Perillo[1], A. Monetti[2], A. Troiano[2], M. G. Di Giuseppe[2], C. Troise[2], G. De Natale[2]
[1]University of Naples Parthenope, Naples, Italy
[2]INGV-Osservatorio Vesuviano, Naples, Italy

Geothermal systems represent a large resource that can provide, with a reasonable investment, a very high and cost-effective power generating capacity. Despite its unquestionable potential, geothermal exploitation has long been perceived as limited, mainly because of the dependence from strict site-related conditions, mainly related to the reservoir rock’s permeability. In this work, SP ...

Numerical Investigation of Micronozzle Performance for Various Nozzle Geometries - new

P. A. Haris[1], T. Ramesh[1]
[1]National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamil Nadu, India

Design and manufacture of thrusters for producing very low thrust force in the range of milli or micro newtons using micronozzles has been actively developed in the last decade. The nature of propellant flow in such micronozzles differs from that of macro nozzles. In micronozzles, viscous effect dominates; hence the flow is always in laminar regime with high viscous losses. Objective of this ...

High-Resolution FSI Modeling of a High-Aspect Ratio Involute Flow Channel in the HFIR at ORNL

A. I. Elzawawy [1], J. D. Freels [2], F. G. Curtis [2, 3],
[1] Vaughn College of Aeronautics and Technology, East Elmhurst, NY, USA
[2] Oak Ridge National Laboratory, Oak Ridge, TN, USA
[3] University of Tennessee, Knoxville, TN, USA

The high flow rate within the HFIR cooling water flow channel causes the fuel plates to deflect which in turn, changes the coolant flow characteristics. This nonlinear feedback loop between the coolant and the fuel plate is the focus of the present simulation of the fluid-solid interaction between the coolant flow and the fuel plates to accurately predict the plate’s deflection using the Fluid ...

Sample Preconcentration in Channels with Nonuniform Surface Charge and Thick Electric Double Layers

A. Eden [1], C. McCallum [1], B. Storey [2], C. D. Meinhart [1], S. Pennathur [1],
[1] University of California Santa Barbara, Santa Barbara, CA, USA
[2] Olin College, Needham, MA, USA

We present a novel method for concentrating and focusing small analytes by taking advantage of the nonuniform ion distributions produced by thick electric double layers (EDLs) in nanochannels with heterogeneous surface charge. Specifically, we apply a voltage bias to a gate electrode embedded within the channel wall, tuning the surface charge in a region of the channel and subsequently altering ...