Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Optimization of Flow Distribution in the Feed Sparger of a Steam Drum

P. Goyal[1], A. Dutta[1], and A. K. Ghosh[1]
[1] Reactor Safety Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, India

Steam drums of a nuclear power plant separate steam from the steam water mixture and sub cooled incoming feed water returns to the reactor. The entire feed water flow is delivered to the steam drum through the feed water sparger. The feed water sparger is provided with number of inverted ‘j’ type lateral tubes to  distribute the feed water in the drum for proper mixing with the separated ...

The Use of CFD Simulations in Learning Fluid Mechanics at the Undergraduate Level

Marc K. Smith
Professor of Mechanical Engineering, Georgia Institute of Technology

Simple, accurate CFD simulations using COMSOL Multiphysics are used in a senior-level undergraduate course as a means to explore a number of fluid flows with the intent of developing a deep understanding of the underlying fluid mechanical mechanisms involved in the flows. Students also learn about the finite element method, how to properly pose the underlying mathematical model for the fluid ...

Hydraulic Design of Activated Sludge Tanks with CFD

A. J. Bosma, and B. A. Reitsma
Tauw bv, Deventer, The Netherlands

The hydraulic design of wastewater treatment plants (WWTP) is usually based on general guidelines and experience. Research and development in this field is mainly focused on understanding and improvement of the biological processes. In this article we present modeling of the activated sludge tanks of the wastewater treatment plants in Amsterdam-West and Eindhoven. For both locations, a number of ...

Coupled Electric-Thermal-Fluid Analysis of High Voltage Bushing

G. Eriksson[1]
[1]ABB, Corporate Research, Västerås, Sweden

Modern power transmission systems are in general designed to operate at high voltages in order to reduce resistive losses generated by high currents. This, however, tends to increase the risk for dielectric breakdown or flashovers if the equipment is not properly designed to withstand the stress. The present work illustrates how multiphysics simulations can be used to analyze and predict the ...

Turbulent Compressible Flow in a Slender Tube

K.O. Lund[1], C.M. Lord[2]
[1]Kurt Lund Consulting, Del Mar, CA, USA
[2]Lord Engineering Corp., Encinitas, CA, USA

Pressure-drop experiments were conducted for the turbulent, compressible flow of air in a small, slender tube, and modeled with COMSOL heat transfer module, and analytically. A scalar integration variable is introduced which integrates the mass velocity [kg/m²s] over the inlet area and iteratively equates this to the input mass flow [kg/s]. For computation, the temperature specification is ...

Numerical Study of the Self-ignition of Tetrafluoroethylene in a 100-dm3-reactor

F. Ferrero[1], M. Kluge[1], R. Zeps[1], T. Spoormaker[2]
[1]BAM Federal Institute for Materials Research and Testing, Berlin, Germany
[2]Chairman PlasticsEurope Fluoropolymers TFE Safety Task Force, Du Pont De Nemours, Dordrecht, The Netherlands

The self-ignition of tetrafluoroethylene (TFE) caused by contact with hot surfaces has been analyzed with the help of simulations performed with COMSOL Multiphysics®. The current study focuses on large-scale heated reactors for the industrial production of polytetrafluoroethylene (PTFE) from TFE at high pressures. Simulations of the self-heating and consequent self-ignition of TFE in a ...

Miscible Viscous Fingering of Pushed Versus Pulled Interface

S. Pramanik[1], M. Mishra[1]
[1]Indian Institute of Technology Ropar, Rupnagar, Punjab, India

Viscous fingering (VF) instability has been extensively studied over past several decades in the context of various industrial, environmental and chemical processes. We try to model miscible VF at pushed or pulled interfaces using COMSOL Multiphysics®. We study the effect of the positive and negative log-mobility ratio on the fingering instability. Numerical simulation has been performed in 2D ...

An Overview of Impellers, Velocity Profile and Reactor Design - new

P. Patel[1], P. Vaidya[1], G. Singh[2]
[1]Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
[2]Indian Oil Corporation Limited, Faridabad, Haryana, India

This paper presents a simulation approach to develop a model for understanding the mixing phenomenon in a stirred vessel. The mixing in the vessel is important for effective chemical reaction, heat transfer, mass transfer and phase homogeneity. In some cases, it is very difficult to obtain experimental information and it takes a long time to collect the data. Such problems can be solved using ...

3-D COMSOL Analysis of Extruder Dies

E. Solomon[1] and V. Mathew[1]
[1]Arcada University of Applied Sciences, Espoo, Finland

Three-dimensional flow analysis was performed by using COMSOL Multiphysics Chemical Engineering Module for the purpose of analyzing the flow properties and finding out the operating points of a test domain. Using material property table for an exemplary melt of LDPE (Low-Density Polyethylene), the logarithmic viscosity-shear rate graph was plotted and fitted to the 4–constant modified Carreau ...

Using COMSOL Multiphysics to Model Viscoelastic Fluid Flow

B.A. Finlayson
Department of Chemical Engineering, University of Washington

Viscoelastic fluids have first normal stress differences even in rectilinear flow. Thus, they are more complicated than purely viscous non-Newtonian fluids modeled as a power-law model or Carreau model. Viscoelastic effects must be included when modeling the flow of polymer melts and concentrated polymer solutions in situations for which the normal stresses matter. The extrudate swell problem ...

Quick Search