Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling Fluid-Induced Porous Scaffold Deformation

J. Podichetty Thribhuvan[1], S.V. Madihally[1]
[1]Oklahoma State University, Stillwater, OK, USA

Utilization of bioreactors to regenerate tissues outside the body has been intensely investigated in functional tissue engineering. Various studies have been performed using computational fluid dynamics (CFD) to understand fluid flow within bioreactors while assuming porous scaffold as a rigid structure. However, the physical and mechanical properties of most tissue engineering scaffolds suggest ...

Modeling of a Biogas Steam Reforming Reactor for Solid Oxide Fuel Cell Systems

F. Cipitì[1]
[1]CNR-ITAE, Institute of Advanced Technologies for Energy, Messina, Italy

A biogas steam reforming reactor has been developed in order to be integrated into a proof-of-concept SOFC system, able to operate with biogas produced in an industrial waste water treatment unit. A mathematical model, aimed at describing the performance of the reactor, has been developed. The reactor is simplified and modeled as a non-isothermal plug flow reactor. The reactor is fed with a total ...

iCP 1.0: Stable Release Version of the Interface COMSOL-PHREEQC - new

A. Nardi[1], L. M. deVries[1], A. Sainz[1], J. Molinero[1]
[1]Amphos 21 Consulting, Barcelona, Spain

iCP (Nardi et al, 2014) is a software that couples two standalone simulation programs: COMSOL Multiphysics® and PHREEQC (Parkhurst & Appelo, 2013). The tool is ideal for applying multiphysics and geochemistry in Earth Sciences. Flexibility of the two coupled codes result in an extensive list of modelling areas, offering good opportunities for R+D. The iCP 1.0 is the version of the ...

Modeling of an LTCC mixer/combustor

Espinoza Vallejos, P.A.1, Furlan, R.2, Sotero-Esteva, J.2, Perez Tolentino, M.2, Wagner Simoes, E.3, Santiago-Aviles, J.J.4
1 Technology Assessment and Transfer, Millersville, MD
2 University of Puerto Rico at Humacao, Humacao, PR
3 Laboratory of Integrated Systems of the University of Sao Paulo, Brazil
4 University of Pennsylvania, Philadelphia, PA

The high energy density of some fossil fuels makes them attractive to power portable devices through the use of thermoelectric conversion elements. The idea explored here is the fabrication of a ceramic combustor using Low Temperature Co-Fired Ceramics tapes. We would like to optimize through simulations the pre-mixing of the fuel (Hydrogen gas) and oxidizer (Oxygen from Air), and the ...

Visions Realized: Using COMSOL Multiphysics to Prepare Students for the Modern World

Bruce A. Finlayson
University of Washington
Washington, USA

This talk demonstrates the success in teaching chemical engineering undergraduates to use COMSOL Multiphysics (FEMLAB) to solve realistic problems in a project format. Undergraduates have been creative and solved problems much more difficult than those in their textbooks, thus gaining a deeper understanding of transport processes. Illustrations are also given how they check to see they’ve ...

Pseudo-3D Multiphysics Simulation of a Hydride Vapor Phase Epitaxy Reactor

M. Hackert-Oschätzchen[1], M. Penzel[1], P. Plänitz[2], A. Schubert[1][3]
[1]Chemnitz University of Technology, Chemnitz, Germany
[2]GWT-TUD, Dresden, Germany
[3]Fraunhofer Institute for Machine Tools and Forming Technology IWU, Chemnitz, Germany

Gallium nitride (GaN) and its related nitride alloys with special physical properties are in technical areas of high interest. The growing of gallium nitride boules on non-native sapphire or silicon carbide requires complicated mechanisms of defect reduction in the lattice structure. Thus the production of gallium nitride substrates is a challenge. Hydride Vapor Phase Epitaxy (HVPE) is a ...

Finite Element Analysis of Induced Electroosmotic Flow in Brain Tissue and Application to ex vivo Determination of Enzyme Activity

Y. Ou[1], A. Rupert[1], M. Sandberg[2], S. Weber[1]
[1]University of Pittsburgh, Pittsburgh, PA, USA
[2]University of Gothenburg, Gothenburg, Sweden

Ectopeptidases are commonly accepted to be a means of clearing active peptides. However, studies have shown that they can also regulate peptide activity. We have developed a technique of electrokinetic push-pull perfusion (Ek-PPP, Figure 1) to examine this largely unexplored mechanism of modulation of peptide function. We push the neuropeptide galanin through organotypic hippocampal slice ...

Can Oscillatory Convection Accelerate Signal Propagation in Simple Epithelium?

M. Nebyla[1], M. Pribyl[1]
[1]Institute of Chemical Technology, Prague, Department of Chemical Engineering, Prague, Czech Republic

We introduce a mathematical model of signal transmission in simple epithelial layers. The mathematical model consists of reaction-transport equations for extracellular ligands, cellular receptors, ligand-receptor complexes and a ligand releasing protease. We consider diffusion and nonstationary convective transport of protein ligands in the extracellular space. The study was carried out using ...

Chromatographic Separation of Tröger’s Base in a Batch Column

A. Fayolas [1], M.G. Sanku[1], M. Pascoa[1], M. Xynou[1]
[1]KTH Royal Institute of Technology, Stockholm, Sweden

The objective of the study is to investigate the chiral separation of Tröger’s base enantiomers using batch chromatography. Because of its resolution, chromatography is often the preferred method for chiral separations. The separation of Tröger’s base is resolved by using the COMSOL Multiphysics® software. It is modeled by one dimension geometry, having the length of the column set and ...

Fouling of Heat Exchangers in the Dairy Industry by Coupling Flow and Kinetics Modelling

M.V. De Bonis, and G. Ruocco
CFDfood, DITEC, Università degli studi della Basilicata, Potenza

The present work exploits modelling of a heat exchanger single channel during the pasteurization of milk. A 2D computation has been performed with COMSOL Multiphysics showing the potential application to optimized geometries and for a variety of products of known biochemical evolution.

Quick Search