Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling an Enzyme Based Electrochemical Blood Glucose Sensor with COMSOL Multiphysics

S. Mackintosh[1], J. Rodgers[1], S.P. Blythe[1]
[1]Lifescan Scotland, Inverness, Scotland

This paper describes the modeling of a blood glucose sensor using COMSOL Multiphysics. Chemical species interaction and diffusion, coupled with electrochemical oxidation of multiple blood species produced a powerful working model used in developing and refining a range of blood glucose sensors for the commercial market.

Optimization of Jet Mixer Geometry and Mixing Studies - new

A. Egedy[1], B. Molnar[1], T. Varga[1], T. Chován[1]
[1]Department of Process Engineering, University of Pannonia, Veszprém, Hungary

The primary aim of using jet as mixer, like in case of other mixing devices, is to increase the heat and mass transfer between the phases. Beside the injection position the geometry of the jet mixer and the injection nozzle has a major effect on the injection. In our study COMSOL Multiphysics software was used to carry out the experimental and simulation of the different jet geometries. The jet ...

Analysis of Deformation of a Liquid Packaging Made With Board of the LPB Type

K. B. Matos [1], I. Neitzel [1],
[1] FATEB, Telêmaco Borba, PR, Brazil

The liquid food product packaging are today predominantly made with board LPB type board (Liquid Packaging Board) composite formed by board, which offers mechanical strength, polyethylene, constituent responsible for protection against the passage humidity, and aluminum foil, which helps protect against oxygen flow. On the day, paper and board are words used as synonyms for each other. ...

Reacting Flows in Industrial Duct-burners of a Heat Recovery Steam Generator

G. Petrone[1], G. Cammarata[1], S. Caggia[2], and M. Anastasi[2]
[1]Department of Industrial and Mechanical Engineering, University of Catania, Catania, Italy
[2]Engineering Maintenance - ISAB Energy Services, Priolo Gargallo, Italy

In this study, COMSOL Multiphysics is applied in order to simulate reacting flows for duct burner systems arranged in the post-firing section of a Heat Recovery Steam Generator of a combined cycle power plant. Two- and three-dimensional simulations are carried out in order to investigate on operative conditions mainly responsible of duct burners overheating. The results are obtained for several ...

A COMSOL Multiphysics®-based Model for Simulation of Methane-Hydrate Dissociation by Injection of Superheated Carbon Dioxide

M. Gharasoo[1], C. Deusner[1], N. Bigalke[1], M. Haeckel[1]
[1]Department of Marine Geosystems, GEOMAR - Helmholtz Centre for Ocean Research, Kiel, Germany

Immense amounts of methane are stored as gas-hydrate deposits in deep layers of marine sediments. This has raised considerable interest to develop strategies for producing natural gas from marine hydrates. One potential production strategy is the injection of supercritical CO2 into methane hydrate-bearing sand layers to release the CH4 as a gas and sequester the CO2 as hydrate. We used COMSOL ...

Modeling Bioelectrochemical Systems for Waste Water Treatment and Bioenergy Recovery with COMSOL Multiphysics®

T. Oyetunde[1], D. Ofiteru[1], J. Rodriguez[1]
[1]Masdar Institute of Science and Technology, Abu Dhabi, United Arab Emirates

Most conventional wastewater treatment processes are quite energy-intensive. Global wastewater production is increasing due to growth in population, industrialization, and urbanization, creating an urgent need for energy-efficient wastewater treatment technologies. Moreover, waste streams (industrial and domestic) have drawn renewed interest as resources for water, energy, and product recovery. ...

Can Oscillatory Convection Accelerate Signal Propagation in Simple Epithelium?

M. Nebyla[1], M. Pribyl[1]
[1]Institute of Chemical Technology, Prague, Department of Chemical Engineering, Prague, Czech Republic

We introduce a mathematical model of signal transmission in simple epithelial layers. The mathematical model consists of reaction-transport equations for extracellular ligands, cellular receptors, ligand-receptor complexes and a ligand releasing protease. We consider diffusion and nonstationary convective transport of protein ligands in the extracellular space. The study was carried out using ...

Kinetic Parameters for Gas Phase Photocatalysis: Analytic Versus CFD Approach - new

S. Denys[1], S. Verbruggen[1], S. Lenaerts[1]
[1]Sustainable Energy and Air Purification, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium

Introduction Among the advanced oxidation processes (AOPs) for removal of volatile organic compounds (VOCs) from air, photocatalytic oxidation (PCO) is considered a very promising technology [1,2]. PCO can achieve mineralization of harmful VOCs to CO2 and H2O using only UV light [3]. A main challenge is to find appropriate kinetic models and parameters that accurately describe the rate of ...

Simulation of a Diesel Oxidation Catalyst Used in a NOx Storage and Reduction system for Heavy Duty Trucks

C. Odenbrand, and E. Senar Serra
Department of Chemical Engineering, Lund University, Lund, Sweden

This work concerns the performance of an oxidation catalyst used in a NOx storage and reduction system. The oxidation of NO is the main objective of this study, where the presence of CO and propene has also been taken into account. Experimental data has been determined on a monolithic oxidation catalyst mounted after a heavy duty diesel engine in a rig. The conversion of hydrocarbons is ...

H2SO4 Catalysis: Perspective and Opportunities for Reducing SO2 Emissions - new

P. L. Mills[1], A. Nagaraj[2]
[1]Department of Chemical & Natural Gas Engineering, Texas A&M University, Kingsville, TX, USA
[2]Department of Environmental Engineering, Texas A&M University, Kingsville, TX, USA

Introduction: Development of next-generation chemical processes that have zero emissions is a key environmental objective for sustainable development. The manufacture of H2SO4 by the air oxidation of SO2 to SO3 is an important technology where an opportunity exists for new catalyst development and process innovation by reducing emissions of unconverted SO2 in process reactor tail gases owing to ...