Quick Search

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Finite Element Analysis Approach for Optimization of Enzyme Activity for Enzymatic Bio-fuel Cell

Y. Song, and C. Wang
Florida International University, Miami, FL, USA

Enzymatic biofuel cells (EBFCs) are miniature, implantable power sources, which use enzymes as catalysts to perform redox reaction with biological fuels such as glucose. In this study using COMSOL Multiphysics, we use an EBFC chip, having three dimensional, highly dense micro-electrode arrays, fabricated by C-MEMS micro-fabrication techniques. Glucose oxidase (GOx) is immobilized on anodes for ...

Wireless RF Digital System for Mouth-Embedded Multi-Sensor Communication

I.M. Abdel-Motaleb[1], J. Lavrencik [1]
[1]Department of Electrical Engineering, Northern Illinois University, DeKalb, IL, USA

There is urgent need to monitor dental and oral diseases, such as tooth decay, gum diseases, and teeth grinding. Such monitoring can be achieved by embedding sensors in the mouth. This technique faces some difficulties. The first is how the power needed for the operation of the sensors and the associated electronic chips can be generated. This power can be generated using the pressure exerted by ...

Finite Element Analysis of Muscular Contractions from DC Pulses in the Liver

G. Long, D. Plescia, and P. Shires
Ethicon Endo-Surgery, Cincinnati, OH, USA

Thermal ablation of malignant tumors has been conducted in patients who are not candidates for surgery for more than ten years. Recently it has been shown that low energy DC pulses can cause cell necrosis. An undesirable characteristic of DC pulses in-vivo is the stimulation of skeletal muscle. The intensity of the contraction depends in part on the duration and height of the pulse. Through the ...

Material Characterization Method Development: From Education to Design Optimization

C. Morgan[1], N. Kenkare[1], M. Williams[2], A. Peterson[2], and D. Williams[2]
[1]Alcon Eye Care Division of Novartis R&D, Duluth, GA
[2]Alcon Eye Care Division of Novartis R&D and Georgia Institute of Technology Co-op Program, GA

Introduction of silicone hydrogel contact lens materials provided products of unprecedented capability to deliver oxygen to the eye during wear. One additional material characteristic of interest is the material’s permeability to ions. This paper discusses descriptive tools and optimization of an impedance method of characterizing ion permeability. A physical model of conductive paper with ...

Thin Membrane Modelling for the Electrical Stimulation of Auditory Nerve

A. Grünbaum[1], S. Petersen[1], H.W. Pau[2], and U. van Rienen[1]

[1]IEF funded by DFG Research Training Group 1505/1 Welisa, University of Rostock, Rostock, Germany
[2]Otolaryngology “Otto Körner”, University of Rostock, Rostock, Germany

Modeling of 2-5 μm thin membranes into a cochlea with a width of 2 cm is computationally. The paper is focused on two approximative methods used to overcome this problem and in addition a simple model challenging of a plate capacitor with a thin membrane of different thickness in-between is presented. The results of simulations with both thin layer approximation methods are compared with those ...

Using Simulations to Evaluate the Proper Conditions of the in Vitro Culture of Bone Tissue

A. Kahlig[1], J. Hansmann[1], H. Walles[2], and T. Hirth[1]
[1]University Stuttgart, Institute for Interfacial Engineering, Stuttgart, Germany
[2]Fraunhofer-Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany

For the development of bioreactor systems, it is reasonable to develop working simulations, to avoid a lot \"trial-and-error\" experiments. Our research goal is the creation of functioning bone grafts for transplantation. Therefore stem cells get homogenously seeded into porous ceramic scaffolds. To evaluate the needed parameters, like perfusion pressure or the mechanical deformation of the ...

Kinetics of Zebrafish Dorsoventral Patterning

B. Jordan, and P. Müller
Harvard University
Cambridge, MA

The specification of cell types and morphogenesis of many biological systems are regulated by the concentrations of signalling molecules. Many systems employ a pair of secreted short-range activators and long-range inhibitors, and these are widely used to generate complex patterns during development. However, the biophysical mechanisms that regulate the different ranges of activators and ...

Three-Dimensional Finite Element Modeling of Current Density in Maternal Transthoracic Defibrillation

A. Jeremic[1], J. Potts[2], E. Khosrowshahli[1]
[1]McMaster University, Hamilton, ON, Canada
[2]McMaster University Hospital, Hamilton, ON, Canada

Although the cardiac arrest in pregnancy is a rare event it can have significant impact in terms of age of mother, mortality of unborn children and consequently long-term effect. One of the commonly used procedures in resuscitation is defibrillation. With recent advances in understanding pathophysiologies in pregnant women it became more obvious that previous studies should be extended to ...

Design of Microneedle Array for Biomedicine

N. Mane[1], A. Gaikwad[1]
[1]Department of Instrumentation, Cummins College of Engineering, Pune, Maharashtra, India

Micro electro-mechanical system (MEMS) is rapidly growing area of interest for a broad spectrum of applications. One particularly fast-growing area is biomedical applications for micromaching technologies. One application of interest to the biomedical industry is the development of microneedles. MEMS technology brings new means for biomedicine field. Patch-based transdermal drug delivery offers ...

Growth and Remodelling of Intracranial Saccular Aneurysms

A. Di Carlo[1], V. Sansalone[2], A. Tatone[3], and V. Varano[1]
[1]Modelling and Simulation Lab, Università Roma Tre, Roma, Italy
[2]Laboratoire de Mécanique Physique, Université Paris Est, Paris, France
[3]DISAT, Università degli Studi dell’Aquila, L'Aquila, Italy

We present a mechanical model a growing spherical shell suitable for predicting the evolution of a Saccular Cerebral Artery Aneurysms (SCAA). It relies basically on the Kröner-Lee decomposition, used to describe the interplay between the current and the relaxed configuration of body elements. Rupture or stabilization of a SCAA are the end effect of a number of biological mechanisms, still poorly ...