Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Design of Electroacoustic Absorbers Using PID Control

H. Lissek, R. Boulandet, and M. Maugard
Ecole Polytechnique Federale de Lausanne
Lausanne, Switzerland

An \"electroacoustic absorber\" is a loudspeaker, used as an absorber of sound, which acoustic impedance can be varied by electrical means. This can be achieved either by plugging passive shunt electric networks at the loudspeaker terminals (“shunt loudspeakers”) or by feeding back the loudspeaker with a voltage proportional to acoustic quantities, such as sound pressure and diaphragm normal ...

Modelling the Wall Vibrations of Brass Wind Instruments

V. Chatziioannou, and W. Kausel
Institute of Music Acoustics
University of Music and Performing Arts
Vienna, Austria

The vibration of the walls of brass wind instruments has been a subject of study in the field of musical acoustics throughout the last decades. The amplitude of such vibrations, stimulated by the oscillating air pressure inside the instrument bore, is very small compared to the dimensions of the instrument. However, it has been recently shown that at the flaring regions of the bell of brass ...

Experimental and Theoretical Investigation of Acoustic Metamaterial with Negative Bulk-Modulus

N. R. Mahesh, and P. Nair
SSN College of Engineering
Chennai
Tamil Nadu, India

Acoustic metamaterials are structured materials of negative mass density or negative bulk-modulus or both of them. Materials are tailored in sub-wavelength dimensions so as to get these negative properties. This paper compares the result of an experimental investigation of acoustic metamaterial with negative bulk-modulus to its COMSOL modeling. The resonance characteristics of single ...

A Study of the Acoustic Response of Carbon Fiber Reinforced Plastic Plates

J. O'Donnell, and G. McRobbie
University of the West of Scotland
Paisly, United Kingdom

This paper gives an introduction to a continuing study detailing the process and development of using both experimental and Finite Element Analysis to characterise the acoustic response of a Carbon Fiber Reinforced Plastic (CFRP) laminate plate provided by a guitar manufacturer. The results show that there is a strong correlation between both the experimental and simulated data which gives ...

Thermo-Acoustic Analysis of an Advanced Lean Injection System in a Tubular Combustor Configuration

A. Giusti[1], A. Andreini[1], B. Facchini[1], F. Turrini[2], Ignazio Vitale[2]
[1]Department of Energy Engineering, University of Florence, Florence, Italy
[2]Avio, Turin, Italy

In this work a thermoacoustic analysis of a tubular combustor with an advanced lean injection system is presented. The performed analysis is based on the resolution of the eigenvalue problem related to an inhomogeneous wave equation which includes a source term representing heat release fluctuations (the so called Flame-Transfer-Function, FTF) in the flame region. The effect of the mean flow is ...

Modeling and Experimental Verification of the Power Transfer and Thermal Characteristics of Piezoelectric Transformers Subjected to Combined Mechanical and Electrical Loading

S. Tuncdemir[1], W.M. Bradley[2]
[1]Solid State Ceramics, Williamsport, PA, USA
[2]QorTek, Williamsport, PA, USA

A piezoelectric transformer allows purely mechanical transfer and scaling of electrical energy via simultaneous utilization of both the direct and converse piezoelectric effects. This mechanical energy transfer enables a wide range of functional differences from typical magnetic-based electrical power transformers. Comparing to their electromagnetic counterparts, piezoelectric transformers are ...

A Study into the Acoustic and Vibrational Effects of Carbon Fiber Reinforced Plastic as a Sole Manufacturing Material for Acoustic Guitars

J. O'Donnell[1], G. McRobbie[1]
[1]University of the West of Scotland, Paisley, Scotland, United Kingdom

This study will research a modern design of acoustic guitar by analysis of the vibrational modes. The guitar that will undergo testing has been provided by Emerald Guitars and is solely constructed using Carbon Fiber Reinforced Plastic (CFRP). With the use of COMSOL Multiphysics© the soundboard of the guitar will be simulated and analysis will be carried out to determine the first 10 ...

Towards Rotordynamic Analysis with COMSOL Multiphysics

M. Karlsson[1]
[1]ÅF, Stockholm, Sweden

In this paper a pre-study on using COMSOL Multiphysics for rotordynamic analysis is presented. It is concluded that it is possible to use COMSOL Multiphysics to perform rotordynamical analysis. However, there are no standard environment for rotordynamics, hence the user has to extend the structural model with the rotordynamics effect such as gyroscopic effect and rotordynamical coefficients. By ...

Multiphysics Modelling of Sound Absorption in Rigid Porous Media Based on Periodic Representations of Their Microstructural Geometry

T.G. Zielinski[1]
[1]Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland

Sound absorption in porous materials with rigid frame and open porosity can be very effectively estimated by applying the Johnson-Allard model in order to substitute a porous medium with an equivalent effective fluid and then utilise the Helmholtz equation for time-harmonic acoustics. The model uses several parameters which characterize the micro-geometry of porous material from the macroscopic ...

Design of a MEMS Resonator for a Centre Frequency Greater than 26.35 MHz and Temperature Coefficient Frequency Less than 0.5 ppm

S.Manikandan[1], R.Radeep krishna[1]
[1]Kalasalingam University, Department of ECE, Srivilliputtur ,Krishnan koil, Tamil Nadu, India

The variability of the design parameters caused by material properties like thermal conductivity is the major challenge in Micro Electromechanical System (MEMS). In resonator design the basic problem is that the frequency changes with temperature variation and quantitative explanation with respect to this varies. The change can be attributed to the stability in terms of frequency drift in parts ...