Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

On the Numerical Modeling of Elastic Resonant Acoustic Scatterers

V. Romero-García[1], A. Krynkin[2], J.V. Sánchez-Pérez[1], S. Castiñeira-Ibáñez[3], and L.M. Garcia-Raffi[4]
[1]Centro de Tecnologías Físicas Acústica, Universidad Politécnica de Valencia, Valencia, Spain
[2]School of Computing, Science & Engineering, University of Salford, Salford, United Kingdom
[3]Depto. Física Aplicada, Universidad Politécnica de Valencia, Valencia, Spain
[4]Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, Valencia, Spain

The elastic and geometrical properties of Low Density Polyethylene (LDPE) foam are used in this paper to improve the attenuation properties of periodic arrangements of acoustic scatterers known as Sonic Crystals (SCs). A specific recycled profile of LDPE foam is used as elastic-acoustic scatterer. The acoustic spectrum of the single scatterer shows two attenuation peaks in the low frequency ...

FEM Simulation of Generation of Bulk Acoustic Waves and their Effects in SAW Devices

A.K. Namdeo[1], N. Ramakrishnan[2], and H.B. Nemade[1]
[1]Department of Electronics and Communication Engineering, Indian Institute of Technology Guwahati, Guwahati, India
[2]Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, India

This paper presents finite element method (FEM) simulation study of the generation of bulk acoustic waves (BAWs) and their effect on the performance of surface acoustic wave (SAW) devices, using COMSOL Multiphysics. A SAW delay line structure using YZ-cut lithium niobate substrate is simulated. The radiation of the bulk waves in all angles into the interior of the substrate is analyzed. The bulk ...

Analysis of Sound Propagation in Lined Ducts by Means of a Finite Element Model

D. Borelli[1] and C. Schenone[1]
[1]DIPTEM, University of Genova, Genova, Italy

The present paper describes the results of a Finite Element Model used to analyze sound propagation in lined ducts. By means of a numerical model it was possible to predict the insertion loss inside rectangular lined ducts in a frequency range from 250 Hz to 4000 Hz. The model was validated by a comparison with experimental data obtained in accordance to ISO 11691 and ISO 7235 standards. The ...

Modeling the response of photoacoustic gas sensors

S.L. Firebaugh[1], F. Roignant[2], and E.A. Terray[3]

[1]United States Naval Academy, Annapolis, Maryland, USA
[2]Polytechnique Nantes, Nantes, France
[3]Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA

A fast, high-sensitivity detector is required for studies of environmentally relevant gases. Photoacoustic spectroscopy (PAS), an absorption spectroscopy technique in which absorption is detected as sound, is explored as a possible solution. A tuning-fork based PAS sensor is modeled using COMSOL. The model combines the acoustic and piezoelectric modules and also includes viscous damping. The ...

Support-Q Optimisation of a Trapped Mode Beam Resonator - new

T. H. Hanley[1], H. T. D. Grigg[1], B. J. Gallacher[1]
[1]Newcastle University, Newcastle-Upon-Tyne, UK

Introducing a disorder into a finite periodic oscillatory system induces the presence of a 'trapped mode': a mode in which the displacement field is localised to the region of the disorder. A main inhibitor to MEMS resonators achieving a high quality (Q) factor is energy radiation through the support to the substrate. The trapped modes present a way to tune this to a minimal value. An initial ...

Transient Heat Transfer Effects from a Flapping Wing

Lind, R.J., Abedian, B.
Department of Mechanical Engineering Tufts University, Medford, Massachusetts

This presentation is a numerical study of fluid flow around a two-dimensional rigid flapping plate and its effects on the resultant transient heat transfer effects on the solid interface. In this study, a flat inflexible thin plate surrounded by air undergoes sinusoidal angular motion from one end while the other end is kept stationary, simulating a flapping motion. The two-dimensional ...

Linear Water Wave Propagation around Structures

L. Martinelli, and A. Lamberti
Universita di Bologna, Italy

Objective of this contribution is to show how to implement the Mild Slope Equations with COMSOL Multiphysics. These equations are commonly used to study the propagation of waves in harbors. Some interesting features are presented, namely the use of weak terms (used for the modelling of the source term); the evaluation of a smooth phase gradient from the complex dependent variable; a robust ...

Application of COMSOL to Acoustic Imaging

K. Mcilhany, and J.C Hernandez
U.S. Naval Academy, Annapolis, MD, USA

Acoustic Imaging of hand movement is being studied with COMSOL and Matlab. A hardware implementation is being pursued that will be an array of 16x16 ultra-sonic speakers placed in a grid facing a similar grid of 16x16 microphones, operating at 40kHz. COMSOL is used to repeatedly calculate the diffraction pattern from a small scattering center, approximately 1.0cm in diameter. In conjunction ...

Acoustic Emission Simulation for Online Impact Detection

C. Yang, M. A. Torres-Arredondo, and C.-P. Fritzen
Institute of Mechanics and Control Engineering
Mechatronics
University of Siegen
Siegen, Germany

Impact monitoring has been extensively studied by several researchers and it has been shown that damage extent can be correlated with the impact magnitude. In order to make the process cost-effective, simulation of the impact has been performed, to get the big training data set from modeling. The structural dynamic responses captured by PZT transducers due to impact events are recorded from ...

Design of Electroacoustic Absorbers Using PID Control

H. Lissek, R. Boulandet, and M. Maugard
Ecole Polytechnique Federale de Lausanne
Lausanne, Switzerland

An \"electroacoustic absorber\" is a loudspeaker, used as an absorber of sound, which acoustic impedance can be varied by electrical means. This can be achieved either by plugging passive shunt electric networks at the loudspeaker terminals (“shunt loudspeakers”) or by feeding back the loudspeaker with a voltage proportional to acoustic quantities, such as sound pressure and diaphragm normal ...

Quick Search