Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Dynamics of a Sessile Droplet Evaporation

G. Marinaro[1], A. Accardo[1], E. Di Fabrizio[1]
[1]Istituto Italiano di Tecnologia, Nanostructures Department, Genova, Italy

Evaporation of sessile droplets is associated with simple phenomena such as the ring-like spot left by a drying coffee droplet. Evaporation rate plays an important role on the convective motion inside the droplet. These fluxes are for example one of the factors responsible for amyloid fibrillation of proteins, a mechanism present in neurodegenerative diseases such as Alzheimer. In our ...

Pore-Scale Simulation of Two-Phase Flow with Heat Transfer Through Dual-Permeability Porous Medium

H.A. Akhlaghi Amiri[1], A.A. Hamouda[1]
[1]University of Stavanger, Stavanger, Rogaland, Norway

This paper addresses one of the major challenges in water-flooded oil reservoirs, which is early water breakthrough due to the presence of high permeable layers in the media. COMSOL Multiphysics is used to model two phase (water and oil) flow in dual-permeability porous medium at micro-scales. The heat transfer module is coupled with the laminar two-phase flow interface, because temperature ...

Keyhole Formation During Spot Laser Welding: Heat and Fluid Flow Modeling in a 2D Axisymmetric Configuration

M. Courtois[1], M. Carin[2], P. LeMasson[2], S. Gaied [1]
[1]ArcelorMittal, Global R&D, Montataire, France
[2]LIMATB Laboratory, Université de Bretagne Sud, Lorient, France

For a better understanding of phenomena associated to the appearance of defects in laser welding, a heat and fluid flow model is developed. This study is focused on the modeling of a static laser shot on a sample of steel. This 2D axialsymmetric configuration is used to study phenomena related to the creation of the keyhole. This model takes into account the three phases of the matter: the ...

Easy Evaluation of Streamer Discharge Criteria

G. Eriksson[1]
[1]ABB, Corporate Research, Västerås, Sweden

An easily implemented method is devised, where analytical criteria for the occurrence of streamer discharges in strong electric fields are evaluated. This is highly useful when designing high voltage power transmission systems and components where the insulation is provided by a gas, e.g. air or SF6.

Ampacity Simulation of a High Voltage Cable Used in Offshore Wind Farms

E. Pelster[1]
[1]Wenger Engineering, Ulm, Germany

The ampacity of a cable depends on the cross section of its conductor. When selecting a cable design for a specific application it is of interest to choose the lowest possible conductor cross section in order to reduce material costs. Therefore an exact calculation of the ampacity is necessary (it is usually limited by the thermal resistance of the insulating cable materials). Commonly the ...

Numerical Investigation of the Convective Heat Transfer Enhancement in Coiled Tubes

L. Cattani[1]
[1]Dipartimento di Ingegneria Industriale, Università degli Studi di Parma, Parma, Italy

The work is focused on the numerical analysis of forced convection in curved tubes investigating the correlation between the heat transfer and friction factor enhancement and the effects of the wall curvature. The analysis was performed by integrating the continuity, momentum and energy equations within COMSOL Multiphysics. The local Nusselt number reaches values higher than the ones expected ...

Multiphysics Process Simulation of Static Magnetic Fields in High Power Laser Beam Welding of Aluminum

M. Bachmann[1], V. Avilov[1], A. Gumenyuk[1], M. Rethmeier[1]
[1]BAM Federal Institute for Materials Research and Testing, Berlin, Germany

The article deals with the application of the Hartmann effect in high power laser beam welding of aluminum. The movement of liquid metal in a magnetic field causes electric currents which build a Lorentz force that decelerates the original flow. The numerical model calculates the influence of a steady magnetic field on partial penetration keyhole laser beam welding of aluminum. Three-dimensional ...

Simulation and Design of an Oven for PET Blow Molding Machines

M. Mor[1], C. Seneci[1], V. Zacché[1], C. Remino[1], G. Petrogalli[1], D. Fausti[1]
[1]Polibrixia, Brescia, Italy

This paper presents the study and design of a new generation oven for PET blow-molding machines. The design faced several technical challenges such as: the temperature distribution in the critical areas, the sharp curvature radius, the high PET thermal inertia and the presence of boundary elements, which affected the overall performances. The work included an analysis of the preform material ...

Exergy Analysis of a Water Heat Storage Tank

F. Dammel[1], J. Winterling[1], K. J. Langeheinecke[2], P. Stephan[3]
[1]Institute of Technical Thermodynamics, Technische Universität Darmstadt, Germany
[2]IAV, Gifhorn, Germany
[3]Institute of Technical Thermodynamics/Center of Smart Interfaces, Technische Universität, Darmstadt, Germany

A combined heat and power (CHP) plant generates both electricity and useful heat. A heat storage tank enables a decoupling of electricity and heat delivery. In this study a cylindrical hot water storage tank is considered. Charging, holding time and discharging are numerically simulated applying COMSOL Multiphysics 4.2. The performance of the heat storage is evaluated by an exergy analysis. ...

Study of Thermal Behavior of Thermoset Polymer Matrix Filled with Micro and Nanoparticles

B. Reine[1], J. Di-Tomaso[2], G. Dusserre[1], P. Olivier[1]
[1]Université de Toulouse, UPS, INSA, Mines Albi, ISAE, ICA, IUT, Dept. GMP, Toulouse Cedex, France
[2]RESCOLL - Société de Recherche, Pessac Cedex, France

This paper addresses the study of thermal behavior of thermoset polymer matrix filled with microparticles. A numerical model was developed with COMSOL Multiphysics to get a random spatial distribution of fillers in a representative volume element (RVE). This model was then compared to an analytical reference model (Hamilton model) and experimental results. This comparison highlights a good ...