See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2018 Collection
2009 - Bostonx

Modeling Optical Nanoantenna Arrays with COMSOL Multiphysics

Z. Liu[1], X. Ni[1], and A. Kildishev[1]
[1]School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA

Optical nanoantennas have been of great interest recently due to their ability to support a highly efficient, localized surface plasmon resonance and produce significantly enhanced and highly confined electromagnetic fields. Such enhanced local fields have many applications such as ... Read More

Implementation of a Paraxial Optical Propagation Method for Large Photonic Devices

J.E. Toney[1]

[1]Pennsylvania State University Electro-Optics Center, Freeport, Pennsylvania, USA

We demonstrate the use of COMSOL Multiphysics with MATLAB to model signal generation in wide-bandgap semiconductor radiation detectors. A quasi-hemispherical detector design is compared with a simple, planar detector. Results show that the quasi-hemispherical design can simply and ... Read More

Multiphysics Simulation of a Packed Bed Reactor

A.E. Varela[1], and J.C. GarcĂ­a[1]

[1]University of Carabobo, Valencia, Venezuela

Most reactor designs are based on pseudo homogeneous models. This paper studies the COMSOL simulation of a packed bed reactor using a 2-D heterogeneous model. The case considered was a packed reactor with spherical catalyst for oxidation of o-xylene in air to phthalic anhydride. Large ... Read More

Multiphysics Simulation of the Effect of Sensing and Spacer Layers on SAW Velocity

P. Zheng[1,4], D.W. Greve[2,4], and I.J. Oppenheim[3,4]

[1]Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
[2]Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
[3]Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
[4]National Energy Technology Laboratory, Pittsburgh, Pennsylvania, USA

Surface acoustic wave gas sensors use a chemically sensitive resistive layer to detect gas concentration. The resistivity of the sensing material, the sensing layer thickness, and the spacer layer thickness all affect the surface wave propagation velocity. Existing analytic theory ... Read More

An Analysis of Heat Conduction with Change of Phase with Application to the Solidification of Copper

J. Michalski[1], and E. Gutirrez-Miravete[2]
[2]Rensselaer at Hartford, Hartford, Connecticut, US

The goal of this study was to determine the possibility of using the finite element in COMSOL Multiphysics program to obtain a high accuracy solution to a moving boundary problem, specifically, the solidification of copper. A one-dimensional geometry in Cartesian coordinates was used to ... Read More

Analysis of Forces acting on Superparamagnetic beads in fluid medium in Gradient Magnetic Fields

U. Veeramachaneni[1], and R.L. Carroll[1]

[1]Department of Chemistry, West Virginia University, Morgantown, West Virginia, USA

Superparamagnetic micro beads offer some  attractive applications in biological and biomedical fields. Some of the important applications include manipulation and separation of cells, isolation of specific cells, active drug delivery, magnetic cell separation, separation of ... Read More

FE Modeling of Surfaces with Realistic 3D Roughness: Roughness Effects in Optics of Plasmonic Nanoantennas

J. Borneman[1], A. Kildishev[1], K. Chen[1], and V. Drachev[1]

[1]School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA

COMSOL Multiphysics has been widely used to model the near and far-field electromagnetics (specifically, transmission and reflection spectra) of gold and silver nanoantenna arrays. We use a moving 3D mesh, thus preserving the DOF number and simply morphing the structure of the mesh ... Read More

Software Package for Modeling III-Nitride QW Laser Diodes and Light Emitting Devices

M. V. Kisin[1], R. G. W. Brown[1], and H. S. El-Ghoroury[1]
[1]Ostendo Technologies, Inc., Carlsbad, CA, USA

We present a modeling software package developed at Ostendo Technologies for analysis and design of semiconductor laser and light-emitting diodes. The current database of material parameters supports complete group of III-Nitride alloys used in visible spectrum applications and can be ... Read More

Finite Element Modeling of Transient Eddy Currents in Multilayer Aluminum Structures

V. Babbar[1], and T. Krause[1]

[1]Department of Physics, Royal Military College of Canada, Kingston, Ontario, Canada

Transient eddy current (TEC) technique is being developed for detection of flaws located at depth within multilayer aluminum structures. The present work involves finite element modeling using COMSOL Multiphysics software to simulate different types of probes by changing some of these ... Read More

Experimental Observation and Numerical Prediction of Induction Heating in a Graphite Test Article

T.A. Jankowski[1], D.P. Johnson[1], J.D. Jurney[1], J.E. Freer[1], L.M. Dougherty[1], and S.A. Stout[1]

[1]Los Alamos National Laboratory, Los Alamos, New Mexico, USA

The induction heating coils used in the plutonium casting furnaces at the Los Alamos National Laboratory are studied here. A cylindrical graphite test article has been built, instrumented with thermocouples, and heated in the induction coil that is normally used to preheat the molds ... Read More