Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Finite Element Analysis of an Enzymatic Biofuel Cell: The Orientations of a chip inside a blood artery

C. Wang[1], Y. Parikh[1], Y. Song[1], and J. Yang[1]
[1]Mechanical & Materials Science Engineering, Florida International University, Miami, Florida, USA

Output performance of an implantable enzymatic biofuel cell (EBFC) with three- dimensional highly dense micro-electrode arrays has been simulated with a finite element analysis approach. The purpose of this research is to optimize the orientation of this EBFC chip inside a blood artery such that the mass transport of glucose around all the micro-electrodes can be improved and hence output ...

Modeling of Nerve Stimulation Thresholds and Their Dependence on Electrical Impedance with COMSOL

P. Krastev[1], and B. Tracey[1]
[1]Neurometrix, Inc., Waltham, Massachusetts, USA

Nerve localization is important for applications in regional anesthesia. Localization is achieved by stimulating the nerve with an electric field produced by a current from a needle inserted into the body of the patient, close to the target nerve.  Modeling of the electric field in close proximity to the nerve may help to explain observed variations in threshold currents and can help to ...

A Non-isothermal Modeling of a Polymer Electrolyte Membrane Fuel Cell

H. Shin[1]

[1]Department of Mechanical Engineering, University of Michigan – Ann Arbor, Michigan, USA

Polymer electrolyte membrane (PEM) fuel cells have attracted attention as an alternative power source in various applications such as vehicles, portable supplies, and stationary power systems. A non-isothermal PEM fuel model is developed and simulated by using COMSOL Multiphysics. Although PEM fuel cells have been expected to be extensively used as an alternative power source, there have been ...

Viscous damping of a periodic perforated MEMS microstructure when the Reynolds’ equation cannot be applied: Numerical simulations

D. Homentcovschi[1], and R.N. Miles[1]
[1]Department of Mechanical Engineering, SUNY Binghamton, NY

This paper develops a computational model for determining the total damping coefficient for a unit cell of a MEMS microscale device containing a repetitive pattern of holes. The basic cell of the microstructure is approximated by an axi-symmetric domain and the velocity and pressure fields are determined from solutions of the Navier-Stokes equations using the finite element software package ...

Design Simulations of a General Purpose Research Micro Reactor for Methane Conversion to Syngas.

C. Bouchot[1], and M.A. Valenzuela[1]
[1]Instituto Politécnico Nacional-ESIQIE, México D.F, México

A general purpose stainless steel micro reactor setup for methane conversion is being designed for research purposes. We intend to design and build a modular device that would be able to manage different types of reactions depending on the installed modules. The device should be able to allow the study of gas phase reactions at low (atmospheric) and high pressures (up to 20 MPa), with the ...

Numerical and Experimental Study of Flow, Heat Transfer and Concentration in a Scaled-up Fuel Cell Anode Channel Model

J. C. Torchia-Nüñez[1], and J.G. Cervantes-de-Gortari[1]

[1]Department of Thermal Engineering, National University of Mexico, UNAM, Mexico City, Mexico

Flow, concentration and temperature fields are studied with numerical and experimental methods inside a scaled-up fuel cell anode channel model. The low aspect ratio channel has a porous medium as the inferior wall where a mixing of different pH solutions occurs. Chromatic change of phenolphthalein is used to visualize concentration field and Particle Image Velocimetry (PIV) is used to visualize ...

Simulation of Electromagnetic Enhancement in Transition Metamaterials using COMSOL

I. Mozjerin[1], T. Gibson[1], and N.M. Litchinitser[1]
[1]Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, New York, USA

Metamaterials are a new class of artificial materials, which possess various unusual properties. One of these properties is a negative index of refraction produced by setting both the dielectric permittivity ε and the magnetic permeability μ of the material less than zero. Unique electromagnetic phenomena occurring at the interface between negative-index materials and conventional ...

Stress Field Simulation for Quantitative Ultrasound Elasticity Imaging

L. Yuan[1] and P.C. Pedersen[1]
[1]Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA

Finite element models using COMSOL Multiphysics and MATLAB were developed to solve the problem of stress distribution interior homogeneous, isotropic, incompressible elastic solid material under known vertical external compression with a rectangular contact surface. Moreover, comparison between these results and analytical solutions was used to further validate that stress drops off with ...

Fluid Dynamics of Blood Flow during Reperfusion and Post-conditioning

T. Merrill[1], A. La Barck[1], and J. Docimo[2]
[1]Rowan University, Glassboro, New Jersey, USA
[2]FocalCool, LLC, Mullica Hill, New Jersey, USA

Reperfusion injury is caused by the rapid restoration of blood flow to oxygen-starved tissue. Animal studies show that intermittent periods of occlusion (also called post-conditioning) during reperfusion can limit tissue damage to vital organs such as the heart and brain. These studies suggest that the protective effects of post-conditioning relate to the dynamics of blood flow. COMSOL is being ...

Quick Search

121 - 129 of 129 First | < Previous | Next > | Last