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Ferrofluids

• Ferrofluids
– Nanosized particles in 

carrier liquid 
(diameter~10nm)

– Super-paramagnetic, single 
domain particles
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– Coated with a surfactant 
(~2nm) to prevent 
agglomeration

• Applications
– Hermetic seals (hard 

drives)

– Magnetic hyperthermia for 
cancer treatment 

solvent molecule
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Bulk Spin-up flow experiments
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Surface and Bulk driven flows

• Bulk flow velocity profiles 

co-rotate with the field

• If there is a free surface, 

there is counter-rotationthere is counter-rotation

at the surface (concave)

• If there is no free surface 

there is co-rotation near 

the surface

A. Chaves, C. Rinaldi, S. Elborai, X. He, and M. Zahn, Bulk flow in ferrofluid in a uniform rotating magnetic field, Physical Review Letters 96 (2006), no. 19, 194501-4.
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Bulk Spin-up Flows

• Inhomogenous heating of fluid and spatial 

variation in magnetic susceptibility driving 

flow [1-4]

• Non-uniform magnetic field due to • Non-uniform magnetic field due to 

demagnetizing effects associated with shape 

of finite height cylinder [5-7]
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Spin Diffusion Model

• Neglects demagnetizing effects associated 

with shape of finite height cylinder

• Experimental fit values of spin viscosity are 

many orders of magnitude greater than many orders of magnitude greater than 

theoretically derived values

• This work analyzes the Spin Diffusion model
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Magnetic Field Equations

• Maxwell’s equations for 

non-conducting fluid

• Magnetic Relaxation 

Equation
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[Amps/m] is the domain 

magnetization (446kA/m for magnetite), Vh is the hydrodynamic volume of the particle,Vp is the magnetic 

core volume per particle, T is the absolute temperature in Kelvin, k = 1.38 × 10−23 [J/K] is Boltzmann’s 

constant, f0 [1/s] is the characteristic frequency of the material and Ka is the anisotropy constant of the 

magnetic domains
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• Extended Navier-Stokes Equation

• Boundary condition on v,  

• Conservation of internal angular momentum

Spin-diffusion Governing Equations 
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• Conservation of internal angular momentum

• Boundary condition on ω unless η’=0,
ρ [kg/m3] is the ferrofluid mass density, p [N/m2] is the fluid pressure, ζ [Ns/m2] is the vortex viscosity, η [Ns/m2] is the dynamic shear viscosity, λ 
[Ns/m2] is the bulk viscosity, ω [s−1] is the spin velocity of the ferrofluid, v is the velocity of the ferrofluid, J [kg/m] is the moment of inertia density, η’

[Ns] is the shear coefficient of spin viscosity and λ’[Ns] is the bulk coefficient of spin viscosity, φ[%] is the magnetic particle volume fraction 
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Assumptions

• Applied field not strong enough to 

magnetically saturate the fluid

• Low Reynolds number flow – inertial effects 

eq fluidχ= HM

• Low Reynolds number flow – inertial effects 

set to 0

• Infinitely long cylinder – no demagnetizing 

effects 
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Theoretical solution computed using 

Mathematica
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Modeling the Magnetic Field

• 1) Surface Current Method

11

S. Khushrushahi, "Ferrofluid Spin-up Flows in Uniform and Non-uniform Rotating Magnetic Fields," PhD, Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, 2010.



Modeling the Magnetic Field

• 2) Scalar Potential Method
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Model Setup and Parameters

• Magnetic field
– Surface current method 

• AC/DC module, Perpendicular Induction 
Currents, Vector Potential 

– Scalar potential method
• General PDE

• Linear Momentum Equation
– Fluid Mechanics Module

– No slip velocity boundary condition

Parameter Value

τeff (s) 1x10-6

ρ (kg/m3) 1030

η (Ns /m2) 0.0045

μ0Ms(mT) 23.9

ζ (Ns/m2) 0.0003

Frequency (Hz) 85– No slip velocity boundary condition

• Angular Momentum Equation
– Diffusion Module

– ω
z
=0 (Boundary condtion for η’≠0)

• Magnetic Relaxation Equation
– 2 convection and diffusion modules 

used (for x and y magnetization)

• All equations are non-
dimensionalized and a Transient 
analysis was computed
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Frequency (Hz) 85

Radius of cylindrical vessel (m) 0.0247

Radius of stator (m) 0.0318

Volume Fraction (%) 4.3

Magnetic Susceptibility χ 1.19

Ω (rad/s) 534.071

η' (kg m/s) 6x10-10

B0 (mT) RMS 10.3,12.5, 14.3

B0 (mT) amplitude 14.57,17.68, 20.22

A. Chaves, et al., "Spin-up flow of ferrofluids: Asymptotic theory and experimental measurements," Physics of Fluids, vol. 20, p. 053102, 2008.



COMSOL 3.5a Results
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Comparison of COMSOL, Mathematica 

and Experimental Results
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Comparison of scalar potential and 

surface current method
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Subtlety of Scalar Potential Method
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Value of using Surface Current Method 
Dipole field outside
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Magnetization
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Magnitude of normalized magnetization as a function of normalized radius
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Magnetization is mostly uniform except at the boundary. Solution to Relaxation Equation 

gives 0.748 almost equal to result obtained using linear magnetic material (0.746)



Dependency of flow profiles on spin 

viscosity term η’
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Conclusions

• COMSOL results compare well with analytical solutions 
using Mathematica, for spin diffusion dominated ferrofluid 
flows neglecting demagnetizing effects

• Two domain (Surface current method) is equivalent to 
single domain (Scalar potential method) for modeling 
rotating magnetic fieldrotating magnetic field

• Care has to be taken to model the magnetic field in single 
domain method
– COMSOL takes care of this automatically in 2 domain case

• COMSOL modeling gives deeper understanding of physics 
(relaxation equation, shape dependency on spin viscosity 
η’) and of subtlety in modeling as one domain problem
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