

#### Time Domain Analysis of Eddy Currents in Saturating Magnetic Materials

Stephen C. Thompson Applied Research Laboratory The Pennsylvania State University

Presented at the COMSOL Conference, Boston, October 12, 2011

## Eddy Currents are Well Understood

• Eddy Currents exist in an electrically conductive material subjected to oscillating magnetic field

▲ 0.1508

0.15

0.1

0.05

-0.05

-0.1

▼ -0.0147

- Oscillating B generates an oscillating circulating current in the conductor
- Oscillating current generates B that opposes (cancels) the original B except at the wall
- B (and J) are confined to the retion of the wall

### Eddy currents

- Wall thickness:  $\delta = \sqrt{\frac{2}{\omega\mu\sigma}}$
- If δ > material dimension, then the
  effect is negligible. Lamination of
  sheets and stranding of wires can
  often eliminate eddy currents
  - But not always

▲ 0.1508

▼ -0.0143

# What happens when the wall saturates?

- Flux spills over to the center
- Fills as much of the volume as needed
- Saturation is reversed each half cycle



#### Low Amplitude Linear



# Intermediate Amplitude with Saturation



## High Amplitude with Complete Saturation



## **Difficult Problem for FEA**



1.4378

0.5

0

-0.5

- Wall is thin and moves through the entire volume
- This example is essentially one-dimensional (<2000 DOF)
- In two dimensions, useful approximations are possible
  - 2D axisymmetric toroidal core

## Infinite Cylinder as a "1D" Problem



- 2D Axisymmetric geometry
- Core, coil, air, infinite domains
- Boundary Element Mesh at surface
- Periodic Boundary conditions in vertical direction

### Solutions are Possible in Some Simple 2D Geometries

- Toroidal core with idealized coil
  - A true 2D axisymmetric case
  - A useful example required ~250k DOF

Others?

#### Realistic 3D Models?

#### Thank You.

## Questions?