Numerical modelling of moisture related mechanical stress in wooden cylindrical objects using COMSOL: a comparative benchmark

Henk Schellen Jos van Schijndel

TU/e

Technische Universiteit **Eindhoven** University of Technology

Walloon Church Delft

Walloon Church Delft

Walloon Church Delft

Playing mechanics

Wind drawer

O

 (\mathbf{h})

Problem definition

- Hot air heating
- Temperature stratification
- Organ damage
- Cracking of wood

Cracking of wind drawers

Cracking of wind drawers

Deformation of wooden panels

Wooden construction cracking

Flaking of paintings

Indoor air conditions near organ

Temperature and RH stratification

Anisotropic material characteristics

1. Tangential 2. Radial 3. Axial

Moisture content measurements by NMR

Majatura aantant maaauramanta hu

DOORSNEDE NMR-BUIS

Drying of a cylinder of wood

Drying of a cylinder of wood

Determining of diffusion coefficient

Measurement vs Simulation

23-11-2010 PAGE 20

Results

Drying rate

New model in Comsol

- Hygrothermal model
 - thermal transport
 - hygric transport
- Linear elastic mechanical model
- Results compared to Jakiela et al.

Moisture distribution

Moisture distribution

/ name of departmen.

Stress distribution

Stress distribution

e

23-11-2010 PAGE 27

/ name of department

PhD work Marco Martens

HVAC system (primitive - advanced)

WP 4,5:OBJECT METHOD: MECHANICAL

- Gradient in wood (difference surface bulk)
- Structural response (bulk over time)

WP 4,5:OBJECT METHOD: MECHANICAL

Conclusions

Current results

- COMSOL model for combined dynamic thermal and moisture transport
- Linear elastic stress calculation

Future work:

- Linkage to existing integrated Simulink model with building model and Simulink controller
- Dynamic stress calculations with measured and simulated indoor boundary conditions

