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Abstract: Objective of this paper is the devel-
opment and implementation of a finite element
model, in a Comsol Multyphisics context, for the
prediction of the aeroelastic behavior of rotor
blades. In particular, the attention is focused on
new generation blades characterized by curved
elastic axes, with the presence of tip sweep and
anhedral angles. The blade structural model im-
plemented is based on nonlinear flap-lag-torsion
beam equations valid for slender, homogeneous,
isotropic, non-uniform, twisted blades undergo-
ing moderate displacements. Curved and arbi-
trarily oriented elastic axes are considered. A
second-order approximation scheme for strain-
displacement is adopted and inertial terms from
rotating motion are included. For aeroelastic
applications, aerodynamic loads are obtained
from sectional theories, with inclusion of wake
inflow models to take into account 3D effects. To
validate the model implemented, several anal-
yses are performed reproducing reliable results
available in literature.

Keywords: innovative rotor blade geometry,
rotor blade dynamics, rotor blade aeroelasticity.

1. Introduction

Rotary wing systems are frequently applied
in aircraft. From the original application in single-
rotor and tandem-rotor helicopters, nowadays
they are used also in tiltrotor configurations.
The main rotor plays a fundamental role in he-
licopter dynamics, and since early stages of the
helicopter history has been carefully studied by
researchers and manufacturer companies. Par-
ticular attention has been focused on the pre-
diction of the aeroelastic behavior of the heli-
copter rotor blades, which requires the appli-
cation of accurate structural and aerodynamic
models. Helicopter rotor blades are flexible, light,
slender structures and hence the structural mo-
del has to be able to take into account both the

strong coupling between bending and torsion de-
grees of freedom and the nonlinearities arising
from the significant deformations they usually
experience.

One of the pioneering models for the de-
scription of the blade dynamics of pre-twisted
nonuniform rotor blades was developed in Ref.
[1], from a linear beam theory. Specifically, it
presents the coupled equations governing in-plane
bending (lag), out-of-plane bending (flap) and
torsion of a twisted, rotating beam. More re-
fined beam-like models for straight rotor blades
have been developed in Refs. [2] and [3], where
geometric nonlinearities are included in order to
take into account moderate displacements of the
blade. Aeroelastic applications of these struc-
tural models are presented in Refs. [4] and [5].

Next, models for new generation rotor blades
with tip sweep and anhedral angles have been
developed. One of the first structural models
for swept tip rotor blades has been presented in
Ref. [6], as a modification of a straight blade
model by including the sweep effects as chord-
wise offsets of the center of gravity axis with
respect to the (straight) elastic axis. However,
this model has been proven to be not accurate
[7, 8]. A structural model for swept blade tips
has been presented and succesfully applied to
hingeless rotor blades in Refs. [7, 8]. A for-
mulation for blades with varying sweep, droop,
twist, and planform is given in Ref. [9]. Ormis-
ton and Hopkins [10] developed and validated
a nonlinear finite element model for swept tip
rotor blades considering large deflections. It is
based on the theory by Hodges and Dowell [2],
introducing a reference frame at the root of each
beam element that is constrained to move with
the tip node of the parent beam element (up-
dated Lagrangian formulation). In this way, a
sufficient number of beam elements enable the
prediction of arbitrary large displacements. An
experimental-theoretical investigation on the in-
fluence of tip sweep angle on the natural fre-
quencies of vibrations of rotor blades is available
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in Ref. [11].
Here, a nonlinear structural dynamic for-

mulation suitable for analysis of blades having
curved elastic axis is implemented in Comsol
Multyphisics. It is an extension of the nonlinear
flap-lag-torsion equations of motion presented in
Ref. [2] for which each beam element is allowed
to be arbitrarily oriented, thus permitting the
simulation of tip sweep and anhedral angles ef-
fects. Numerical results will present a valida-
tion of the proposed Comsol Multyphisics ap-
plication by comparison with experimental and
numerical data available in the literature con-
cerning free-vibration analysis of rotor blades
with tip sweep and anhedral angles. In addition,
coupling the structural dynamic model with a
model predicting aerodynamic loads an aeroe-
lastic formulation is developed in Comsol Mul-
typhisics and the corresponding results are com-
pared with literature data. The blade dynam-
ics model implemented in Comsol Multyphisics
is open to further improvements that could be
focused both on the sophistication of the im-
plemented structural/aerodynamic formulations
and on the connection of the blade with rotor
hub mechanics and control chain.

2. Blade structural model

In this work, the nonlinear equations for ho-
mogeneous, isotropic rotor blades with straight
elastic axis undergoing moderate displacements
presented in Ref. [2] are used as starting point to
describe the structural dynamics of rotor blades
with arbitrary shape of the elastic axis. Specifi-
cally, this is achieved by writing the elastic loads
in terms of local variables along the (curvilinear)
elastic axis, and developing general expressions
for the inertial loads due to the rotary motion
of the blades. In particular, the resulting for-
mulation is suitable for the analysis of advanced
geometry blades, like those with sweep and an-
hedral angles at the tip.

The equations implemented are obtained in
a weak form, typical for finite element model,
starting from Hamilton’s principle

δI =
∫ t2

t1

[(δU − δT )− δW ] dt = 0 (1)

where U is the strain energy, T is the kinetic
energy, and δW is the virtual work of the exter-
nal forces. The model includes spanwise vari-
ation in mass and stiffness properties, variable
built-in pretwist, precone, sweep and anhedral

angle. Nonlinear strain-displacement relation-
ship are considered: second order terms are re-
tained in the equations after the application of
an ordering scheme that drops third-order terms
(with respect to bending slope) not contributing
to damping [2].

2.1 Variables and Coordinate Systems

Several coordinate systems are introduced
to derive the equations of motion of the blade.
The main ones, given in Fig. 1, are the rotating,
hub-centered orthogonal system (xR, yR, zR),
the rotating, local, blade-fixed system, (x, y, z),
with x axis aligned with the local undeformed
elastic axis, and the rotating, local, blade-fixed
system, (x′, y′, z′), with x′ axis locally aligned
with the elastic axis after deformation. Each
beam finite element is defined through the local
coordinate system (x, y, z). Deformations are
described by displacements of the elastic axis
and rotations of beam sections. Displacements,
u, v, w, are defined in the local frames fixed with
the undeformed blade, whereas the section rota-
tion, φ, is about the x′ axis.
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Figure 1: Undeformed and deformed blade config-
urations.

2.2 Strain energy contributions

The first variation of the strain energy ap-
pearing in Eq. (1) is given in terms of engineer-
ing stresses and strains as follows [2]

δU=
∫ R

0

∫
A

(σxxδεxx+σxηδεxη+σxζδεxζ) dη dζ dx

where R is the rotor radius, A denotes the sec-
tion area, whereas η and ζ denote the princi-
pal cross section axes. Introducing the expres-
sions for the engineering strain [2] into the equa-
tion above and assuming negligible cross-section



warping, the strain energy becomes

δU=
∫ R

0

[
Vx′(δu′+ v′δv′+ w′δw′)+(Sx′ +Tx′) δφ′

+
(
Mz′ cos θ̂+My′ sin θ̂

)
(δv′′+ w′′δφ)

+
(
Mz′ sin θ̂−My′ cos θ̂

)
(δw′′− v′′δφ)

]
dx (2)

where θ̂ = θ+φ, with θ denoting the blade cross-
section pitch angle. In the equation above, ne-
glecting higher order terms, stress resultants and
moments are defined as [2]

Vx′ = EA

(
u′ +

v′2

2
+
w′2

2
+ k2

Aθ
′φ′
)

Sx′ = GJφ′

Tx′ = EAk2
A θ̂

′
(
u′ +

v′2

2
+
w′2

2

)
My′ = EIy′

(
v′′ sin θ̂ − w′′ cos θ̂

)
Mz′ = EIz′

(
v′′ cos θ̂ + w′′ sin θ̂

)
In the equations above, E is the Young modulus,
G is the shear modulus and

Iz′ =
∫
A

η2dηdζ J =
∫
A

(
η2 + ζ2

)
dηdζ

Iy′ =
∫
A

ζ2dηdζ k2
A =

1
A

∫
A

(
η2 + ζ2

)
dηdζ

Note that the blade cross sections have been as-
sumed to be symmetric, and tensile and torque
offsets have been assumed to be zero.

2.3 Kinetic energy contributions

The first variation of the kinetic energy ap-
pearing in Eq. (1) is given by

δT =
∫ R

0

∫
A

ρ ~V · δ~V dη dζ dx

where ~V denotes velocity of the blade points as
observed by an inertial frame, and ρ is the den-
sity of the material. Expressing the blade veloc-
ity in terms of the variables introduced above,
integrating by parts in time and over the blade
cross section, δT becomes

δT =
∫ R

0

[
(Z̄u + Z̄ru) δu+ (Z̄v + Z̄rv) δv

+ (Z̄w + Z̄rw) δw+(Z̄φ + Z̄rφ) δφ
]
dx (3)

where

Z̄u = −mü

Z̄v = −mv̈ +meφ̈ sin θ

Z̄w = −mẅ −meφ̈ cos θ

Z̄φ = −mk2
mφ̈+me [v̈ sin θ − ẅ cos θ]

while the ()r terms due to the blade rotation will
be given in the next section where, for the sake
of clarity, they are derived from inertial loads
directly written in terms of acceleration. In the
equations above, m is the mass per unit length,
e is the mass offset and mk2

m is the polar cross-
section mass moment of inertia.

2.4 Inertial loads due to rotary motion

The expressions of the inertial loads due to
the rotary motion of the blade are now obtained
in the local, rotating, undeformed blade-fixed
frame of reference. In order to take into ac-
count advanced blade geometry (including, for
instance, tip sweep and anhedral angles), an elas-
tic axis of arbitrary shape is considered in defin-
ing the kinematics of blade sections. The local
acceleration due to blade rotation is given by

~a = ~Ω× ~Ω× ~r + 2 ~Ω× ~v

where ~r denotes the distance of a cross section
point from the hub center, ~v is the velocity of
the same point with respect to a rotating frame
fixed with the undeformed blade, while ~Ω is the
blade angular velocity.

Then, considering components in the local
blade-undeformed frame of reference, the result-
ing inertial distributed forces read

px = −
∫
A

ρ ax dη dζ py = −
∫
A

ρ ay dη dζ

pz = −
∫
A

ρ az dη dζ

while the resulting inertial distributed moments
defined with respect to the section shear center
are given by

qx =
∫
A

ρ [ay(rz − w) − az(ry − v)] dη dζ

qy =−
∫
A

ρ [ax(rz − w)] dη dζ

qz =
∫
A

ρ [ax(ry − v)] dη dζ



Finally, the corresponding generalized iner-
tial loads due to blade rotation appearing in Eq.
(3) are obtained from the following combination
of the distributed inertial loads [2]

Z̄ru = px

Z̄rv = py − q′
z

Z̄rw = pz + q′
y

Z̄rφ = qx + v′qy + w′qz

3. External aerodynamic loads

Aeroelastic applications of the blade struc-
tural model outlined in Section 2 require the in-
troduction of the aerodynamic loads forcing the
blade dynamics. Here, for the sake of simplicity,
the aerodynamic loads are derived from a quasi-
steady approximation of the Greenberg theory
[12] for airfoils. Aerodynamic three-dimensional
effects are taken into account by including a
wake inflow model (see, for instance, Ref. [4]
for details). Thus, section force, T , orthogonal
to the chord, and section force, S, parallel to the
chord are given by

T =
%Clαc

2

[
−UPUT +

c

2
ω UT −

c

4
U̇P +

( c
4

)2

ω̇

]
S =

%Clαc

2

[
U2
P −

c

2
ω UP −

Cd0
Clα

U2
T

]
while the section pitching moments with respect
to the quarter-chord point reads

Mφ = −%Clαc
3

32

(
ω UT − U̇P +

3c
8
ω̇

)
In the equations above, UP and UT are, respec-
tively, the quarter-chord velocity components nor-
mal and parallel to the chord after deformation,
ω is the section angular velocity, c denotes the
chord length, % is the air density, Clα is the lift
slope coefficient, while Cd0 is the drag coeffi-
cient.

Next, the blade aeroelastic equations are de-
rived by expressing UP , UT and ω in terms of
u, v, w and φ and expressing the aerodynamic
forces given above, T and S, in terms of compo-
nents, Lv and Lw, in the local blade undeformed
frame of reference. Indeed, in Eq. (1) they con-
tribute to the virtual work term as follows

δW = Lv δv + Lw δw +Mφ δφ (4)

4. Implementation in Comsol Mul-
tiphysics

The implementation in Comsol Multiphysics
of both blade structural model and aerodynamic
loads has been accomplished as a modification
of the 3D Euler-Bernoulli beam model present
in Comsol Multiphysics 3.5a Structural Mechan-
ics package. This choice has been motivated
mainly by the following two reasons: (i) the
3D Euler-Bernoulli beam model in Comsol Mul-
tiphysics has the same degrees of freedom of
the rotating beam model to be implemented,
and (ii) in the 3D Euler-Bernoulli finite element
model transformations between global and lo-
cal coordinate systems are automatically avail-
able. The model has been implemented replac-
ing both weak and dweak terms appearing in
the 3D Euler-Bernoulli beam model with those
given in Eqs. (2) and (3), and defining all the
parameters involved in them as global and local
variables. Aerodynamic forces and moments ap-
pearing in Eq. (4) have been included as exter-
nal distributed loads. The model implemented
may be applied for static and dynamic solutions,
as well as eigenvalue analysis.

5. Results

The aim of the numerical investigation is
the validation of the finite element model im-
plemented in Comsol Multiphysics in terms of
both free-vibration analysis and aeroelastic re-
sponse of a helicopter blade with sweep and an-
hedral angles at the tip (see Fig. 2). In particu-
lar, results from the present solver are compared
with numerical and experimental data available
in the literature.
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Figure 2: Blade tip sweep, ΛS , and anhedral, ΛA,
angles.



5.1 In vacuo analyses

First, free-vibration, in-vacuo, analyses for
the hingeless rotor blade model described in Ref.
[10] are presented. Figures 3-5 show compar-
isons between present results and both numer-
ical and experimental data given in Refs. [10]
and [11], respectively. Specifically, Fig. 3 con-
cerns the frequencies of vibration of the unswept
rotating blade as functions of the rotating speed,
Fig. 4 depicts the frequencies of vibration of
the nonrotating blade for several values of the
tip sweep angle (starting from the 85% of the
blade span), while Fig. 5 shows the effects of
the tip sweep angle on the frequencies of vi-
bration of the rotating blade (note that, nondi-
mensional frequencies and normalized rotation
speed are related to the nominal blade rotat-
ing speed). For all the analyses presented the
agreement of the present results with those from
Refs. [10] and [11] is excellent, thus demonstrat-
ing the capability of the implemented finite ele-
ment solver to capture the effects of rotation and
curved elastic axis on free vibration of flap-lag-
torsion beams. For instance, in the presence of
swept tip, flap-torsion coupling is expected. Al-
though not presented here, this behavior is cor-
rectly predicted by the present solver as revealed
by observation of the predicted eigenvectors. In
addition, also the significant effect of tip sweep
angle on the torsional frequency experimentally
observed for rotating blades (see Fig. 5) is well
captured by the solver implemented in Comsol
Multiphysics. These effects are a combination of
centrifugal stiffening of ‘tennis-racket’ type with
torsion first-mode inertia increase.
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Figure 3: Normalized eigenfrequencies vs normal-
ized rotor speed. Unswept blade.
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Figure 4: Normalized eigenfrequencies vs sweep
angle. Nonrotating blade.
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Figure 5: Normalized eigenfrequencies vs sweep
angle. Rotating blade.

5.2 Aeroelastic analyses

Next some aeroelastic analyses for hovering
configurations are presented for hingeless, strai-
ght rotor blades, as well as for hingeless rotor
blades with tip sweep and anhedral angles.

First the untwisted, stiff-in-plane blade with
straight elastic axis described in Ref. [4] is con-
sidered. Figure 6 depicts the steady-state de-
flections (flap-lag displacements and torsion ro-
tation) at the tip of the blade, predicted for sev-
eral values of the blade pitch angle. In addi-
tion, Figs. 7 and 8 present the results of the
perturbation aeroelastic eigenanalysis (in terms
of eigenfrequencies and dampings, respectively)
carried out about the trim configuration of Fig.
6. Figures 6-8 show an excellent agreement be-
tween present results and those given in Refs. [4]



and [13] for the same rotor configurations, thus
validating, for a straight blade, the formulation
implemented in Comsol Multiphysics. These re-
sults demonstrate that the inclusion of aerody-
namic effects introduces dampings in the blade
dynamic behavior that are strongly dependent
on the blade pitch (both directly and via the sta-
tionary trim configuration that is perturbed).
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Figure 6: Equilibrium blade tip deflections.
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Figure 7: Aeroelastic eigenfrequencies for straight
blade.

Then, the blade described in Ref. [13] is
considered for the analysis on the aeroelastic
stability effects due to tip sweep and anhedral
angles. In particular, the tip 10% of the blade is
subject to sweep and anhedral distortion. Fig-
ures 9 and 10 present the results of the aeroe-
lastic eigenanalysis for the baseline blade given
in Ref. [13] for several values of the sweep an-
gle, respectively in terms of eigenfrequencies and
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Figure 8: Aeroelastic dampings for straight blade.

dampings. Next, Figs. 11 and 12 show the
same kind of results concerning a modified blade
where structural data have been tailored so as
to cause a strong coupling between first-torsion
and second-flap modes. The comparison between
the results presentd in Ref. [13] and those from
the formulation implemented in Comsol Multi-
physics reveals a very good agreement. In par-
ticular, the present approach is able to predict
both the different influence the sweep angle has
on the depicted modes and the instabilizing ef-
fects induced by the frequency coalescence ap-
pearing in the modified blade (see Figs. 11 and
12).
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Finally, the effects of anhedral angle on blade
aeroelastic behavior has been investigated. Fig-
ures 13 and 14 show the results of the aeroe-
lastic eigenanalysis for the baseline blade given
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Figure 10: Aeroelastic dampings vs sweep angle.
Baseline blade.
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Figure 11: Aeroelastic eigenfrequencies vs sweep
angle. Modified blade.
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Figure 12: Aeroelastic dampings vs sweep angle.
Modified blade.
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Figure 13: Aeroelastic eigenfrequencies vs an-
hedral angle. Baseline blade.
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Figure 14: Aeroelastic dampings vs anhedral an-
gle. Baseline blade.
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Figure 15: Aeroelastic eigenfrequencies vs an-
hedral angle. Modified blade.
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Figure 16: Aeroelastic dampings vs anhedral an-
gle. Modified blade.

in Ref. [13], for several values of the anhedral
angle, while Figs. 15 and 16 present the re-
sults of the same analysis concerning a modified
balde model in which structural properties have
been set to get the frequency coalescence be-
tween first-torsion and second-lag modes. Akin
to the comparison presented for the sweep vari-
ation, the comparison between present results
and those in Ref. [13] is quite good. The influ-
ence of anhedral angle on aeroelastic damping is
well captured, as well as the instabilizing effects
induced by the frequency coalescence appearing
in the modified blade (see Figs. 15 and 16).

6. Conclusions

A nonlinear formulation for the structural
and aeroelastic analysis of rotating blades with
advanced geometry (nonuniform, twisted blades
with curved elastic axis) has been implemented
in the finite-element Structural Mechanics mod-
ule of Comsol Multiphysics. It has been vali-
dated for both in-vacuo free-vibration analyses
and hovering aeroelastic eigenanalyses, by com-
parison with experimental data and numerical
results available in the literature. Both free-
vibration and aeroelastic results have shown the
capability of the formulation to predict with good
accuracy the structural dynamics and aeroelas-
tic behavior of rotating blades. In particular,
structural coupling effects and influence of tip
sweep and anhedral angles on aeroelastic damp-
ing have been shown to be correctly predicted.
This validate the implemented blade model that
seem to be a reliable tool for application in anal-

ysis and design of helicopter rotor blades and
tiltrotor proprotors. Further developments in-
clude (from the structural point of view) the ex-
tension to non-isotropic blades and (from the
aeroelastic point of view) the extension to for-
ward flight configurations.
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