A Virtual Pharmacokinetic Model of a Human Eye

Sreevani Kotha¹, Lasse Murtomäki^{1,2}

¹University of Helsinki, Centre for Drug Research

&

²Aalto University, School of Science and Technology, Department of Chemistry

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

www.helsinki.fi/yliopisto

Increasing standard of living:

- \rightarrow increasing life expectancy
- \rightarrow increasing number of posterior eye diseases:
- age related macular degeneration; in USA 2 million
- diabetic retinopathy
- ganglion cell damage due to glaucoma

Drug therapy of posterior eye very difficult

direct injections to eye, for example

Modeling of drug distribution in eye is one way of facilitating the development of eye therapies

Pharmacokinetics with state model

$$\begin{cases} \frac{dc_1}{dt} = -K_{p1}(c_1 - c_3) - k_1 c_1 \\ \frac{dc_2}{dt} = k_1 c_1 - K_{p2}(c_2 - c_3) - k_2 c_2^2 \\ \frac{dc_3}{dt} = K_{p1}(c_1 - c_3) - k_3 c_3 \\ \frac{dc_4}{dt} = k_2 c_2^2 + k_3 c_3 \end{cases}$$

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

dt

This is what e.g. Stella® does

Q: Why COMSOL? A: Length scale

eye size

$$x \approx \sqrt{Dt} \quad \Rightarrow \quad t \approx \frac{x^2}{D}$$

Evolution:

- On cellular level diffusion not an issue.

 Convection due to blood circulation very efficient.

Cross-section of the human eye and administration routes

Topical

Our COMSOL drawing of an eye

Equations

- Incompressible Navier-Stokes, laminar flow in steadystate, in anterior chamber and choroid
- Transient convective diffusion in anterior chamber and choroid
- Transient diffusion elsewhere

Homogeneous reactions, usually 1st order or Michaelis-Menten kinetics

Mobility in various tissues:

- blood ≈ water
- vitreous humor ≈ hydrogel, η ≈ 4000 cP (experiments with FRAP)

Pulsed boundary condition

 H_s = Heaviside step function (flc2hs) τ = pulse delay T = pulse period

- Δt = pulse width
- t_1 makes the first pulse start at t = 0

Boundary condition between phases

Permeability (K_p) and partition (P)must be taken into account at the phase boundaries

Flux = $-K_p(Pc_1 - c_2)$ | Flux = $K_p(Pc_1 - c_2)$

Project goals achievable
64 bit PC required for 3D modeling
Drawing preferably with CAD

Acknowledgements:

Academy of Finland for funding
COMSOL Helsinki office for technical support

THANK YOU