Dimensionless versus Dimensional Analysis in CFD and Heat Transfer

H. E. Dillon, A. F. Emery, R. J. Cochran, A. Mescher October 2010

Overview

- Problem Introduction
- Literature Review
- Model (Governing) Equations
- Simulation Results
- Dimensioned and Dimensionless Results
- Conclusions

Problem Introduction

- There are many ways of non dimensionalizing natural convection flow problems and it is not clear which is best.
- The specific geometry and problem provide a platform to test different methods in COMSOL.

$$A = \frac{H}{R_o - R_i}$$

$$\eta = \frac{Ro}{R_i}$$

Literature Review

Author	Year	A	Description	
De Vahl Davis 5	1983	1	Benchmark solution for a square cavity.	
Lee and Korpela 9	1983	0-1000	Reported Nu and	
			streamfunctions.	
Chenoweth and Paolucci 2	1986	1 - 10	Compare ideal gas	
			and Boussinesq.	
Suslov and Paolucci 17	1995	∞	Non-Boussinesq impact	
			on stability and considered Ra_c with ΔT .	
Mlaouah et al. 11	1997	1	Compared Boussinesq, ideal gas,	
			and low Mach approximation.	
Paillere et a. 13	2000	1	Compared Boussinesq	
			and low Mach approximation.	
Xin and Le Quere 20	2002	8	Benchmark study reported Ra_c .	
Christon et al. 3	2002	8	Comparison study of	
Contract Contract			methods, grids, etc.	
Reeve et al. 16	2003	10	Commercial code FIDAP.	
Vierendeels et al. 19	2003	1	Benchmark with ideal gas.	
Xin and Le Quere 21	2006	1-7	Investigated instabilities.	
Dillon et al. 6	2009	8-33	Dimensioned benchmark study	
			in rectangular cavity, COMSOL.	

W UNIVERSITY of WASHINGTON

Problem Introduction

Model Equations

Navier Stokes

$$\rho \frac{\partial u}{\partial t} + \rho (u \cdot \nabla) u =$$

$$\nabla \cdot (-pI + \eta (\nabla u + \nabla u^{T}))$$

$$-(2\eta/3 \nabla \cdot u)I + F$$
(5)

Conservation of Mass

$$\nabla \cdot u = 0 \tag{6}$$

Conservation of Energy

$$\rho c_p \frac{\partial T}{\partial t} + \nabla \cdot (-k \nabla T) = -\rho c_p u \cdot \nabla T \quad (7)$$

Characteristic Velocity Options

Author	Characteristic Velocity	Description
	$\frac{\alpha}{L} = \frac{k}{\rho c_p L}$	Thermal diffusion velocity.
De Vahl Davis 5	$\frac{\sqrt{\beta g \Delta TL}}{\sqrt{Gr}} = \frac{\mu}{\rho L}$	Viscous diffusion velocity.
Ostrach 12	$\sqrt{\beta g \Delta T L}$	For strongly coupled flows $Pr < 1$ and $\sqrt{Gr} > 1$
Ostrach 12	$\frac{\sqrt{\beta g \Delta T L}}{\sqrt{Pr}}$	For strongly coupled flows $Pr > 1$ and $\sqrt{Gr} > 1$
Wan Hassan 8	$\frac{\alpha Ra^{1/4}}{L} = \frac{kRa^{1/4}}{\rho c_p L}$	Based on boundary layer thickness and thermal diffusion velocity.
Abrous 1	$\frac{\mu Ra^{1/4}}{\rho L}$	Based on boundary layer thickness and viscous diffusion velocity.

Dimensionless Variables

Parameter	Option 1	Option 2	Option 3	
		Strongly coupled	Weakly coupled	
R, Z U	$\frac{\frac{r}{H}, \frac{z}{H}}{\frac{u}{\frac{\alpha}{L}\sqrt{RaPr}}}$	$\frac{\frac{r}{H}, \frac{z}{H}}{\sqrt{q\beta\Delta TH}}$	$\frac{\frac{r}{H}, \frac{z}{H}}{\frac{u}{u_{forced}}}$	
V	$\frac{\frac{v}{\frac{\alpha}{L}\sqrt{RaPr}}}{\frac{\alpha}{L}}$	$\frac{\sqrt{v}}{\sqrt{g\beta\Delta TH}}$	$\frac{v}{u_{forced}}$	
Θ	$\frac{T - T_c}{\Delta T}$	$\frac{\dot{T}-T_c}{\Delta T}$	$\frac{T-T_c}{\Delta T}$	
τ	$t\sqrt{g\beta}\Delta TH^{-1}$			
Р	$\frac{pL}{\mu \frac{\alpha}{L} \sqrt{RaPr}}$			
ρ	$\sqrt{\frac{Ra}{Pr}}$	1	1	
c_p	Pr	1	1	
μ	1	$\sqrt{\frac{Pr}{Ra}}$	$\frac{1}{Re}$	
g	1			
β	1	1	NA	
k	1	$\frac{1}{\sqrt{RaPr}}$	$\frac{1}{Pe}$	
F	$(T-T_c)\sqrt{\frac{Ra}{Pr}}$	$\sqrt{\frac{Ra}{Pr}}$	Re	

Dimensioned Variables

Description	Equation
Boussinesq Approximation	$\rho = \rho_o (1 - \beta (T - T_c))$
Ideal Gas	$\rho = P/RT$
Force Term	$F = -g\rho$

W UNIVERSITY of WASHINGTON

Simulation Results

Figure 1: Dimensionless temperature at the center of the cavity over time. Ra = 2.5e7, A = 10 and $\eta = 0.6$.

Simulation Results

Fig. 2: Sequential contour plot of the stream function illustrating oscillation of the natural convection cells through one period (II). Ra = 2.5e7, A = 10 and $\eta = 0.6$.

Simulation Results

Fig. 3: Sequential contour plot of the temperature (Θ) illustrating oscillation of the natural convection cells through one period (Π). Ra = 2.5e7, A = 10 and $\eta = 0.6$.

Dimensioned and Dimensionless Results

Description	Rayleigh	Density	\mathbf{k},cp,μ	Period	Amplitude
Option 1 16	2.5e7	Boussinesq	Constant	16.15	0.1285
Option 1	2.5e7	Boussinesq	Constant	16.126	0.1278
Dimensioned	2.5e7	Boussinesq	Constant	16.116	0.1279
Dimensioned	2.5e7	Ideal Gas	Constant	16.161	0.1277
Dimensioned	$2.5\mathrm{e}7$	Ideal Gas	T dependent	16.161	0.1253
Option 1	4e7	Boussinesq	Constant	11.0703	0.1484
Dimensioned	4e7	Boussinesq	Constant	11.0091	0.1485
Dimensioned	4e7	Ideal Gas	Constant	11.0091	0.1485
Dimensioned	4e7	Ideal Gas	T dependent	11.0091	0.1481
Option 1	10e7	Boussinesq	Constant	7.1860	0.1361
Dimensioned	10e7	Boussinesq	Constant	7.0917	0.1362

Conclusions

- Dimensioned and dimensionless solutions in COMSOL show good agreement for Ra=2.5e7 using the Boussinesq approximation.
- As the Rayleigh number is increased (Ra=10e7) the ideal gas solutions follow a separate solution path. This is a function of the chaotic behaviour of the system. This phenomena has also been observed at higher Rayleigh numbers when the Boussinesq approximation is used [16].

Chaotic behaviour of the System

At high Rayleigh numbers the system becomes chaotic as new harmonics appear. Ra=18e7 is shown.

Chaotic behaviour of the System

The system shows hysteresis. Depending on the starting point for the simulations different solution paths are found.

Future Work

• Continue exploration of the chaotic nature of this system.

Acknowledgements

Thanks to NSF for the principle funding through Grant 0626533.

Undergraduate student support from Jaeger Dill, Sarah Edwards, and Kimberley Hartman.