Multi-physics model for Thermal Management of packaged Mid-IR laser

Outline

- Modeling @ CSEM (not exhaustive!)
- Mid-IR Laser thermal management and packaging considerations
- Multi-physics modeling challenges
- Selected simulation approach
- TEC model / Full Package model implementation and results
- Conclusions

And many other multi-physics simulations...

Comsol Modeling @ CSEM

Microfluidic modeling

Optical field modeling

Diffusion-driven physics modeling

Thermal modeling

Resistive path accurate calculation

b. Force and torque simulations

- 8 magnetic poles 20 coils «spherical» rotor analysis
- · Levitation and rotation control confirmed by analysis and tests
- · Joule heating assessment and coupled field strength variations

Structural physics & MEMS modeling

CSEM designed NASA/DLR SOFIA airborne astro-telescope "M2 mechanism": FEM details of Flexure design of mirror tip-tilt suspension system, and moment compensation under load

Mid-IR Laser thermal management considerations

- <u>Mid-IR photonics is growing</u> thanks to advances in Lasers, QC-Lasers, MEMS gratings and fiber optics.
- <u>Temperature</u> is the key to <u>stable and reliable operation</u> of photonic systems
- <u>Thermal management and package design</u> can be handled with <u>multi-physics FEM models</u>

Mid-IR Laser packaging considerations

- <u>Heat-spreading submount</u> to efficiently remove heat
- <u>Thermo-electric cooler (TEC)</u> below heat spreader
- Kovar package to reduce thermo-mechanical stress and enable hermetic sealing.

<u>Mid-IR Laser</u> with Joule heating loss of <u>P_{th} ~40(W)</u>

Multi-physics modeling challenges

- Conjugated heat transfer (dry air sealed in Kovar package).
- Convective and Radiative effects from external package.
- Multi-physics coupling also to Thermo-electric cooler (TEC).
- Parametric analysis to find optimum laser peak temperature.
- Optimal solver investigation (iterative segregated approach was selected).
 - Extract relevant information with large sweep parameter set
 - Parametric Sweep simulations with both static/transient studies

Selected simulation approach

- 1. Improve TEC model from Comsol Application Library
 - Adding more mesh control (mapped meshing)
 - Adding realistic Thermo-electric pellets measured material parameters

RMT

- Provided by RMT Ltd
- <u>http://www.rmtltd.ru/</u>
- 2. Embed model in a full-package enclosure
 - Model air inside the sealed package in quasi-static approach
 - Static simulation is consistent with quasi-static approach
 - Transient simulation is compatible to quasi-static approach for a short time and provides a worst-case almost adiabatic scenario (fluid convecting away from heat source)
 - Added radiation and convection boundary conditions on outer «skin» of the full package model

Ltd

Thermoelectric Cooling Solutions

Thermo-Electric Cooler (TEC) model implementation

- Use of Comsol Application available in the Application Library
- Improved Mesh approach to cope for large model with 12x24 pellets
- <u>TEC model calibrated with supplier material data (Seeback, k, other...)</u>
- <u>Calibrated TEC model comparison with lumped-model simulator.</u>
 - <u>Heat flux accurate to >99% compared to results from lumped model software</u> <u>developed by TEC supplier</u>

Full Package simulations model implementation

- Large model (high resolution)
- 9 independent parmater set
- 112h solution time

~ Sei

- Ambient of 50°C
- Heatsink @ 22°C

heat_spreader_thk=2.5, dispx_laser=10, Tref=50 Surface: Temperature (degC) Slice: Temperature (degC) degC degC Sealed air (slice) 15 10 ▲ 68.3 ▲ 68.3 mm 40 5 0 65 65 20 -5 60 60 5 0

Full Package simulations qualitative results

- Optimal set of submount parameter to minimize the laser peak temperature.
- Optimal laser mount position was found to minimize laser peak temperature.
- Impact of reference heatsink and ambient temperature has been assessed.
- Transient simulation to check the full package thermal time-constant(s).

Example of transient results

Full Package simulations benefits

- Parametric analysis for optimal package components design choice.
 - Skipping trial-and-error effort.
 - Avoiding purchase, assembly and testing costs
- Full-package model provides insight on ambient & heatsink temperatures
 - Impact on the laser max. operating temperature
- Insight on TEC model choice and its detailed behavior
- Transient simulation provides insight on pulsed (LF)

& short-time operation mode

Conclusions

- Multi-physics simulation for Packaged Mid-IR Laser results
 - Laser mounting position on submount is critical along optical axis to achieve minimum laser peak temperature, a position near the middle is optimal (not exactly in the middle).
 - Heat spreader thickness has an impact on laser peak temperature.
 - Thickness of 2.5-4.5(mm) is optimal from thermal stanpoint
 - TEC must be always on if laser is active to avoid damage risk.
- More information on the above topic available on the Poster
- Come and visit us at the CSEM Booth !!

Thank you for your attention!

Follow us on

www.csem.ch

