

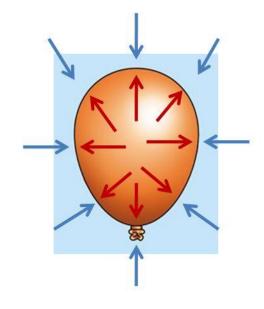
Geologic CO2 storage: Implications of Two-Phase Flow on Injection-Induced stress on Faults

Mr. Samir Prasun, Louisiana State University Dr. Seunghee Kim, University of Nebraska, Lincoln Dr. Seyyed Hosseini, Bureau of Economic Geology

Pressure on a Balloon

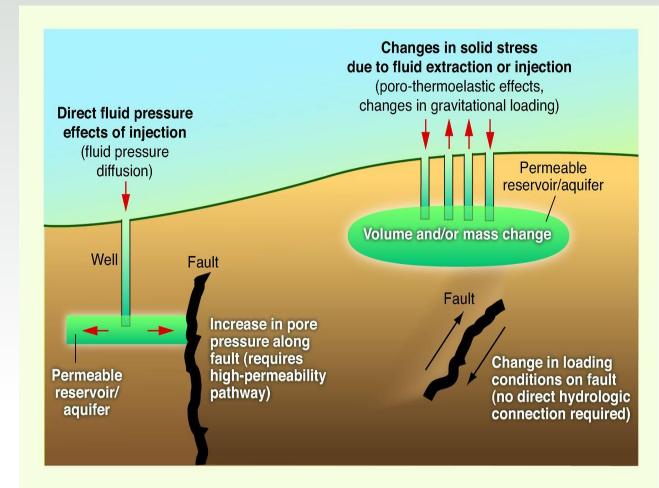
Air Pressure from the atmosphere is pushing in.

Air Pressure from the compressed air inside the balloon is pushing out.



23

Real Examples of Fluid-Solid Interactions



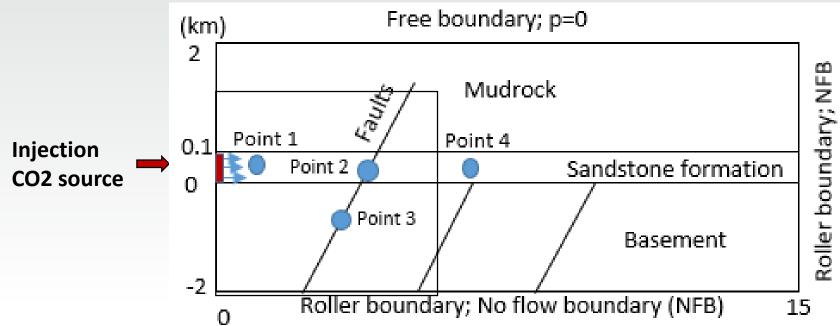
Motivation

- Use of single phase fluid flow model coupled with the geomechanics may be inaccurate
- Traditional multi-phase poro-mechanical model suffer from drawbacks resolved by COMSOL

Traditional models	COMSOL Multiphysics
Use of finite difference	Finite element
Partially implicit-partially explicit method (IMPES)	Fully implicit
Employs linear solver which cannot solve discretized non-linear equations	Employs fast non-linear solvers-Newton Rhapson iteration scheme
Meshes are cartesian, difficult to program non- uniform geometries like faults	Automatic meshing system-capable of automatically refining complex domains

Objectives

- Evaluate the effect of two phase flow simulation on the stress on hydraulically connected conductive faults during CO2 sequestration
- Compare the geomechanical effects of two phase flow with single phase flow conditions



Single phase Poro-Mechanical Equations using COMSOL Multiphysics

• Fluid to solid coupling equation using Solid mechanics interface

$$\sigma = C\varepsilon - \alpha p_f I \tag{1}$$

• Mass conservation equation defined via PDE user interface,

$$\rho_w S_{\in w} \frac{\partial (p_w)}{\partial t} + \nabla \cdot \rho_w [-\lambda_w (\nabla p_w + \rho_w g \nabla h)] = -\alpha \frac{\partial (\rho_w \varepsilon_{vol})}{\partial t}$$
 (2)

Solid deformation complies with force equilibrium:

$$\nabla \cdot \sigma + (\rho_w \varphi + \rho_d)_{\stackrel{\longrightarrow}{q}} = \underset{0}{\longrightarrow}$$
 (3)

$$S_{\in w} = \varphi c_w + (\alpha - \varphi) \frac{1 - \alpha}{K_d}$$

$$K_d = \frac{2\nu(1 + G)}{3} / (1 - 2\nu), \lambda_w = \frac{k}{\mu_w}$$

C = elasticity matrix ρ_w = density of water α = biot's constant p_w = pore pressure

I = identity matrix λ_w = mobility of water, m^2 /Pa.s

 $S_{\in w}$ = constrained water fluid storage coefficient

 ε_{vol} = volumetric strain ϕ = porosity

k = absolute permeability μ_w = viscosity of water

G = shear modulus ν = poisson's ratio

 c_w = compressibility of water K_d = drained bulk modulus

Two-Phase Poro-Mechanical Model using COMSOL Multiphysics

Constitutive equation of Solid mechanics interface

$$\sigma = C\varepsilon - \alpha p_f I \qquad (1)$$

Solid-to-fluid coupling

$$\rho_{g}S_{g}S_{\in g}\frac{\partial(p_{w})}{\partial t} + (\varphi\rho_{g} + \rho_{g}S_{g}S_{\in g}\frac{\partial p_{c}}{\partial S_{g}} + \alpha\rho_{g}\varepsilon_{vol})\frac{\partial(S_{g})}{\partial t} + \nabla \cdot \rho_{g}\left[-\lambda_{g}(\nabla p_{w} + \frac{\partial p_{c}}{\partial S_{g}}\nabla S_{g} + \rho_{g}g\nabla h)\right] = -\alpha S_{g}\frac{\partial(\rho_{g}\varepsilon_{vol})}{\partial t}$$

$$\rho_{w}(1 - S_{g})S_{\in w}\frac{\partial(p_{w})}{\partial t} - (\varphi\rho_{w} + \alpha\rho_{w}\varepsilon_{vol})\frac{\partial(S_{g})}{\partial t} + \nabla \cdot \rho_{w}[-\lambda_{w}(\nabla p_{w} + \rho_{w}g\nabla h)] = -\alpha (1 - S_{g})\frac{\partial(\rho_{w}\varepsilon_{vol})}{\partial t}$$
(3)

Solid deformation complies with force equilibrium:

$$\nabla \cdot \sigma + (\left((1 - S_g)\rho_w + S_g\rho_g\right)\varphi + \rho_d) \underset{g}{\rightarrow} = \underset{0}{\rightarrow} (4)$$

Where,

$$S_{\in g} = \varphi c_g + (\alpha - \varphi) \frac{1 - \alpha}{K_d}$$

$$S_{\in w} = \varphi c_w + (\alpha - \varphi) \frac{1 - \alpha}{K_d}$$

$$K_d = \frac{2\nu(1 + G)}{K_d} (1 - 2\nu), \lambda_g = \frac{k_g}{\mu_g}, \lambda_w = \frac{k_w}{\mu_w}$$

C = elasticity matrix α = biot's constant p_f = pore pressure I = identity matrix S_g = gas saturation p_w = water phase pressure ε_{vol} = volumetric strain φ = porosity μ_q = viscosity of gas μ_w = viscosity of water c_a = compressibility of gas

 ρ_q = density of CO2 ρ_w = density of water λ_g = mobility of gas, m^2 /Pa.s λ_w = mobility of water, m^2 /Pa.s $S_{\in a}$ = constrained gas phase storage coefficient $S_{\in w}$ = constrained water phase storage coefficient p_c = capillary pressure k_w = effective permeability of water k_q = effective permeability of gas c_w = compressibility of water

Model Properties and Boundary Conditions

- The top, bottom and side boundaries except the fluid inlet are no flow boundaries.
- A roller is imposed on the bottom and side boundaries. The top surface is free.
- The initial conditions for the change in pore pressure, p_f and stresses are,

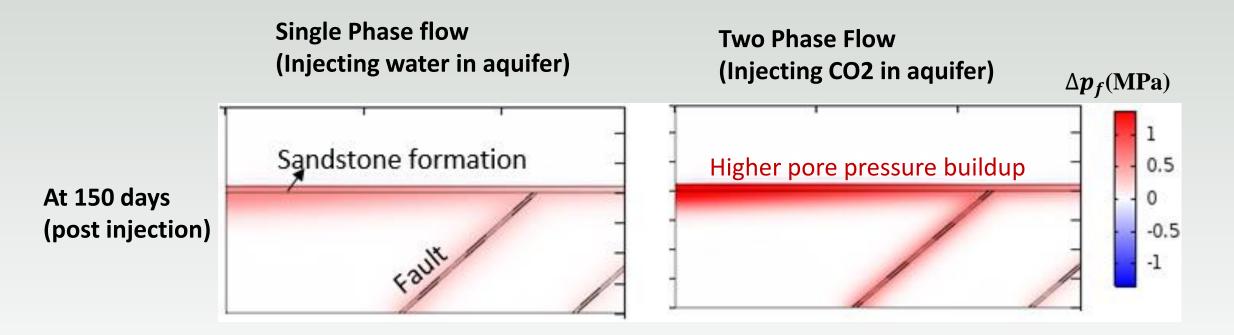
$$\begin{aligned} p_f(x,t=0) &= 0 \;;\\ \sigma_{xx}(t=0) &= \sigma_{zz}(t=0) = \sigma_{yy}(t=0) = 0 \end{aligned}$$

Chang and Segall 2016

Model properties	Unit	Mudrock	Sandstone	Basement	Fault
Permeability	m^2	10^{-19}	6.4×10^{-14}	2×10^{-17}	10^{-13}
density	kg/m³	2600	2500	2740	2500
Shear modulus	GPa	11.5	7.6	25	6
Biot's constant	-	0.35	0.55	0.24	0.79
Poisson's ratio	-	0.3	0.15	0.2	0.2
Porosity	-	0.1	0.25	0.05	0.02
Friction factor, f	-	0.5	0.6	0.6	0.75

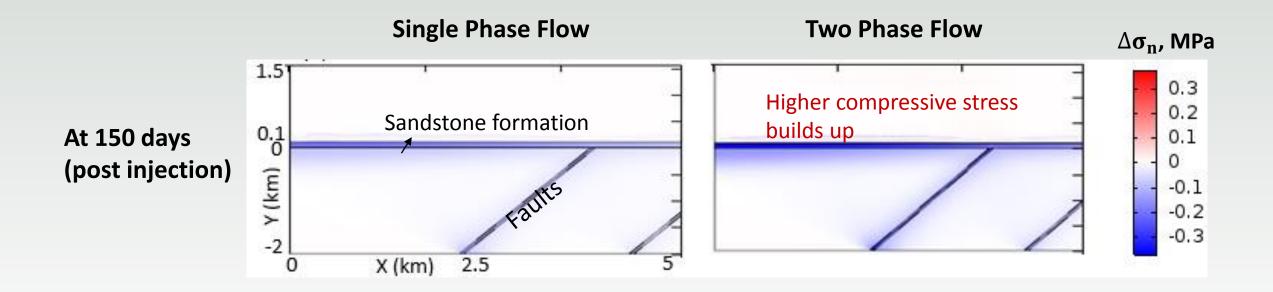
Parameters	Unit	Value
Volumetric rate (Q)	m³/day	3000
Length of target formation (L)	m	15000
Duration of injection	days	30
Thickness of target formation	m	100
Initial formation pressure (Pi)	MPa	20
Initial formation temperature (T)	F	150
Depth of target formation	m	1900

Numerical Results and Analysis- Change in pore pressure, Δp_f



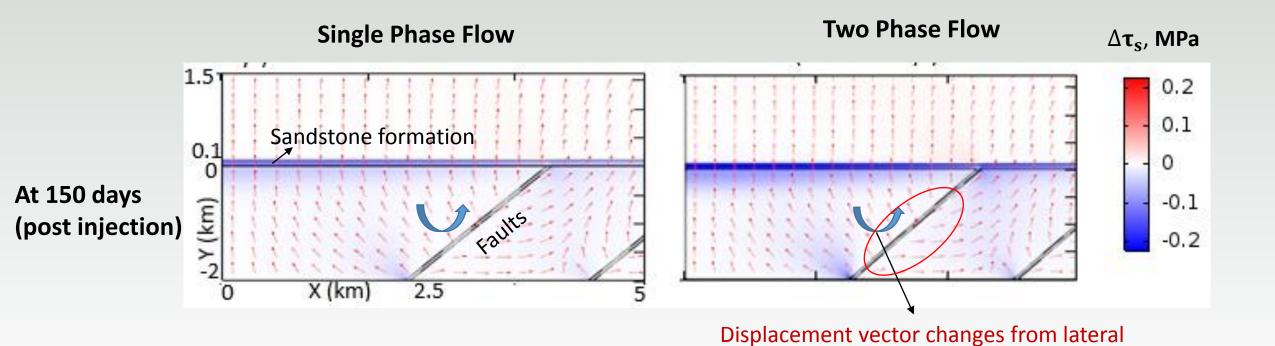
• Slower pressure diffusion due to lower hydraulic diffusivity of two phase flow causes higher pore pressure build up

Change in Normal stress, $\Delta \sigma_n$ on plane parallel to faults



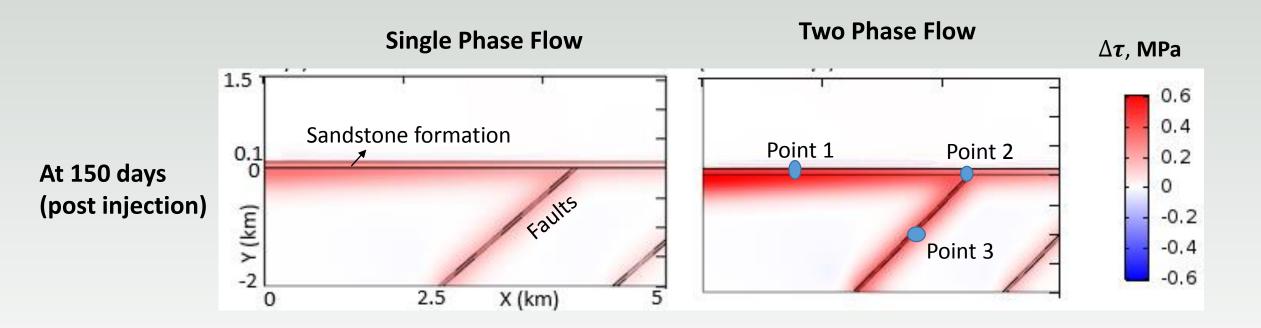
Higher Compressive stress changes occurs in faults under two-phase flow conditions

Change in Shear stress, $\Delta \tau_s$ along with displacement, u on faults



to vertical causing slight positive shear stress change

Change in Coulomb stress, $\Delta \tau = \Delta \tau_s + f(\Delta \sigma_n + \Delta p_f)$



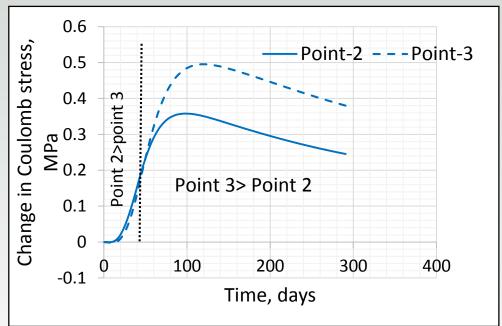
- Coulomb stress change resemble pore pressure change
- Coulomb stress change is higher under two phase flow condition

Pore pressure and Coulomb stress changes at Points 2, and 3 in faults

Coulomb stress, $\Delta \tau = \Delta \tau_s + f(\Delta \sigma_n + \Delta p_f)$

Two Phase Flow Simulation

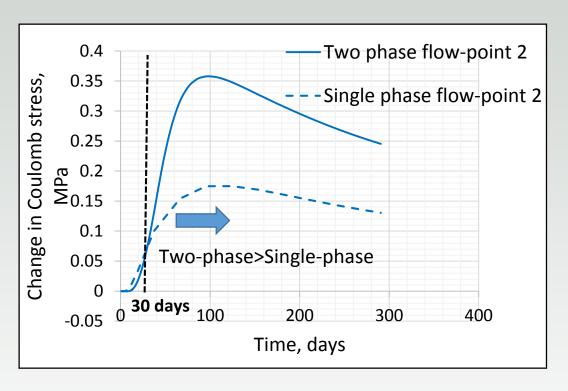




- Pore pressure at point 3 is lower than that at point 2
- Coulomb stress at point 3 is higher than that at point 2 causing higher chances of failure in basement

Coulomb stress changes at Point 2 in faults

Coulomb stress, $\Delta \tau = \Delta \tau_s + f(\Delta \sigma_n + \Delta p_f)$



- Discrepancy in the coulomb stress can be more than 100%
- Single phase flow condition can underestimate slip-induced failure in faults

Conclusions

- Under single phase flow condition pore pressure buildup is lower which underestimate the chances of fault failure
- Based on analysis of coulomb stress, faults are more likely to slip at the basement vs inside the formation
- Positive shear stress develops in faults which cause faulting and negative shear stress develops in saline aquifer which inhibits faulting

Thanks

