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Abstract: Constitutive properties of living cells 
are able to withstand physiological environment 
as well as mechanical stimuli occurring within 
and outside the body. In this context, a 
quantitative study in single cell mechanics needs 
to be conducted. Particularly, we will examine 
fluid flow and Neo-Hookean deformation related 
to the rolling effect. A mechanical model to 
describe the cellular adhesion with detachment is 
here proposed. We develop a Finite Element 
analysis, simulating blood cells attached on 
vessel wall. Restricting the interest on the 
contact surface and elaborating again the 
computational results, we develop an equivalent 
spring model. The simulation notices 
deformation inhomogeneities (i.e. areas with 
different concentrations having different 
deformation values). This important observation 
should be connected with a specific form of the 
stored energy deformation. In this case, it loses 
the standard convexity to show a non-monotone 
deformation law. Consequently, we have more 
minimum and the variational problem seems 
more difficult.  
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1. Introduction 
 

In order to physically model and determine 
the effect of the blood flow in presence of a 
human cell, a Finite Element Method (FEM)-
based approach has been exploited. It requires 
the geometrical and physical definition of the 
blood vessel, the cell and flow parameters. For 
our purpose, we verify cell deformation under 
actual conditions (see Figure 1 [1] and 2). Thus, 
a brief description of the theoretical framework 
for the mechanical is given. Then, we describe 
the exploited approach through FEM analysis 
simulating the human cell and the blood flow, 
and so modeling an endothelial wall cross of a 
blood flow. 

Our aim was to focus the contact part among 
cell and endothelial wall about the deformation 
field. Our opinion is that the simulation notice 
the deformation inhomogeneity namely different 
concentration areas with different deformation 
values. This important observation should be 
connected with a specific form of the stored 
energy deformation that, in this case, loses the 
standard convexity to show the multy-well form. 
Consequently, we have more minimum and the 
variational problem seems more difficulty. 

Solutions through minimizing sequence are 
applied and this relieve microstructure 
formation. 

 

Figure 1. Geometrical representation of the model 
 

 
Figure 2. 3D-view of cell deformation in a real image 
in presence of blood flow 

 
2. The Rolling Effect 
 

Rolling effect [2] is a particular case of cell 
adhesion and it involves several phenomena of 
diverse nature: mechanical, physical or chemical 
interactions. One of the most important point 
concerns the adhesion molecules lying on the 
surface of the cell and on the wall, characterized 
by their chemical properties and density. The 
creation of connections between the cell and the 
wall can occur if the molecules being present, the 
ligands (on the cell) and the receptors (on the 
wall) respectively, are sufficiently close to each 
other, and if the chemical affinity is strong 
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enough [3]. The rolling of the cell consists in the 
simultaneous creation and rupture of connections 
when the system is subjected to a fluid flow. The 
most important example in this case is the 
slowing down of the leukocyte cell during the 
immune defense (see Figure 3). In the general 
case, the interface zone involves free adhesion 
molecules: ligands, receptors and connections, 
which represent the junction between the ligands 
of the wall and the receptors of the cell [4]. The 
cell membrane stiffness increases, in the case of 
an adhering cell, because of the local 
reinforcement of the cytoskeleton: this is due to 
the presence of external chemiotactic particles, 
which create an external signal [3, 5]. 
 
3. Theoretical Framework 
 
3.1 Mechanical Aspects 
 

The From mechanical point of view this is a 
detachment problem and, according to Villaggio 
[6], Leitman and Villaggio [7], it can be 
formulated as the peeling of an adhesive 
membrane initially glued to a flat surface. 
Regarding the cell as membrane solid pulled 
with a forces system, we say that, when the 
blood flow is regular the cell will remain 
perfectly glued to the endothelial wall, while 
when the flow intensity augments part of cell 
may be pulled away. Let u the displacement 
field, then the equation of motion hold  
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where ρ is the supposed constant density and Τ 
the stress tensor. Clearly a the boundary of the 
detached part we have 

u = 0 on ΩD                                                      (2) 

 Here the problem is the determination of ΩD. 
By Villaggio [1] we recall the breaking condition 
in the form 

(T-ρν2) ∂u/∂n = −F on ΩD                              (3)   

where ν denotes the normal velocities of ΩD, 
∂u/∂n is the normal outer of u on ΩD and F is the 
cohesive forces. The closed form of (1) exists 
only for some particular cases. For instance let f* 
the static resultant of the flow actions and 
supposing it just applied at the origin of the 
system. So, in this case  f(x, y, t)=f*δ(x)δ(y) with 

δ(⋅) the delta function. For instance supposing 
the u filed symmetrical about to the origin, we 
consider a circular region and so u = u(r) and the 
region ΩD becomes a circular region which 
radius is λ. Under this consideration the solution 
of (1) has the form 

u(r) = (f*/2πT) lnr + cos(t)                               (4) 

namely 

u(r) =  (f*/2πT) ln(r/ λ)                                     (5) 

and in ν = 0 

λ = (f*/2πF)                                                      (6) 

The complete solution in closed form 
becomes 

u(r)= (f*/2πF) ln(2πfr/ f*) on r ≤ λ         (7) 
 
3.2 FEM Model Generation 
 

In this section of the paper we show how to 
simulate the effect of a blood flow in presence of 
a cell in a blood vessel. Using our FEM package 
[8-10], the blood flow and pressure drop across 
human cell have been studied and a 
mathematical model of the process has been 
constructed and analyzed. The constructed 
mathematical model consists of the equations of 
continuity (representing conservation of mass), 
motion (representing conservation of 
momentum) for the flow of blood through 
human cell [11] (see Figure 4 [12]).  

 

Figure 3. 2D-view of cell deformation effect: at t0=0 
(s) on the left and at t1=0.125 (s) on the right. 
 

 
Figure 4. Schematic diagram of the side-view flow 
and cell adhesion. The fluid flows from left to right 
(Lc=1 (μm), Hc=2.3 (μm)) 

 
These equations are supplemented by 

appropriate models which represent the 
stress/strain behaviour of human cell [13]. 



Simulation of fluid-structure interaction is a 
challenging problem for computer modellers. 
Fluid flow and Neo-Hookean hyperelastic 
deformation modelling has been the subject of 
numerous research during the past few decades.  

Our approach provides reliable simulations 
for both these steps. The study of these problems 
requires quantitative information regarding the 
interaction between blood flow and human cell 
deformation under realistic physiological 
conditions. The complexity of such a task is such 
that only computer based numerical simulations 
can be used. In this work we exploited FEM to 
solve the developed mathematical 2D model 
representing the operations of human cell. For 
our aims, the Comsol Multiphysics® package has 
been exploited. Computer modeling can help in 
this context if it is based on an appropriate 
mathematical model and an accurate reliable 
solution. So it is needed to fit a model to the 
problem and get a satisfactory solution. 
 
3.3 Governing equation of elastic-solid 
deformation 
 

For a purely elastic solid [10]: 

0ij
j

fx
∂ σ + =
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                                                  (8) 

ij ij ijp pσ = − δ +                                                  (9) 

σ is the strain tensor. Let u is the displacement 
field, then under the material incompressible 
hypothesis 

0∇⋅ =u                                                           (10) 

2ij ijGeτ =                                                        (11) 

( )p k= − ∇⋅u                                                   (12) 

where G and k are, respectively, the shear 
modulus and   the bulk modulus. Specific finite 
element techniques such as the penalty method 
are well suited to combine the described set of 
Neo-Hookean hyperelastic and fluid equations. 
 
3.4 Governing equation fluid motion, 
conservation of mass and momentum 

 
If an inelastic generalized Newtonian flow 

behavior is assumed [11, 12], the Cauchy stress 
tensor σ can be written as 

2 ( )p Dνσ = − + η γI                                           (13) 

where η(γ) is the shear-rate-dependent dynamic 
viscosity and Dv denotes the rate of deformation 
tensor   

1 [ ( ) ]2
TDν = ∇ν+ ∇ν                                        (14) 

The shear rate parameter γ must be defined in 
terms of the second invariant of the rate of 
deformation tensor. For incompressible fluid this 
is  

2 :D Dν νγ =                                                  (15) 

The Non-Newtonian behavior of blood can 
be described very well with the Carreau-Yasuda 
model 

1

0

( ) [1 ( ) ]
n

a a
−

∞

∞

η γ −η = + λγ
η −η

                                (16) 

with η0, η∞, λ, a and n being parameters of the 
model. For a time constant λ=0 this model 
reduces to a simple Newtonian model with 
η(γ)=η0. 
 
4. COMSOL Mutiphysics Analysis 
 

The following section shows proposed model 
for fluid-structure interactions. It illustrates how 
fluid flow can deform surrounding “structures” 
and how to solve for the flow in a continuously 
deforming geometry using the arbitrary 
Lagrangian-Eulerian technique [14-16]. The 
model geometry consists of a horizontal flow 
channel in the middle of which is a human cell, 
with a circular structure. The cell forces the fluid 
into a narrower path in the upper part of the 
channel, thus imposing a force on the structure’s 
walls resulting from the viscous drag and fluid 
pressure. The cell structure, being made of a 
Neo-Hookean hyperelastic material, bends under 
the applied load. Consequently, the fluid flow 
also follows a new path, so solving the flow in 
the original geometry would generate incorrect 
results. The Navier-Stokes equations that solve 
the flow are formulated for these moving 
coordinates. The simulations exploit the FEM 
and require geometrical and physical definition 
of the blood flow and the human cell [17]; the 
latter has been modeled as a circumference with 
a portion of perimeter adherent to the venous 
paries. In this example the flow channel is 



100 (μm) high and 300 (μm) long. The cell 
structure has a radius of 1.25 (μm), and is 
adherent 1 (μm) long at the channel’s bottom 
boundary. Assume that the structure is along the 
direction perpendicular to the image. The fluid is 
a water-like substance with a density 
ρ=1000 (kg/m3) and dynamic viscosity 
η=0.001 (Pa·s). To demonstrate the desired 
techniques, assume the cell structure consists of 
a Neo-Hookean hyperelastic material with a 
density ρ=7850 (kg/m3) initial tangent 
E=80 (kPa). The model consists of a fluid part, 
solved with the Navier-Stokes equations in the 
flow channel, and a structural mechanics part, 
which you solve in the human cell. Transient 
effects are taken into account in both the fluid 
and the cell structure. The structural 
deformations are modeled using large 
deformations in the Plane Strain application 
mode. The displacements and displacement 
velocities are denoted u, v, ut, and vt, 
respectively. Fluid flow is described by the 
Navier-Stokes equations for the velocity field, 
u=(u,v), and the pressure, p, in the spatial 
(deformed) moving coordinate system: 

[ ( ( ) )] (( ) )T
mt

∂ρ −∇−ρ +η∇ + ∇ +ρ − ⋅∇ =
∂
u I u u u u u F (17) 

0−∇⋅ =u                                                         (18) 

In these equations, I denotes the unit 
diagonal matrix and F is the volume force 
affecting the fluid. Assume that no gravitation or 
other volume forces affect the fluid, so that F=0. 
The Navier-Stokes equations are solved in the 
spatial (deformed) coordinate system. At the 
inlet, the model uses a fully developed laminar 
flow. Zero pressure is applied at the outlet. No-
slip boundary conditions, that is u = 0, are used 
at all other boundaries. Note that this is a valid 
condition only as long as you are solving the 
stationary problem. In this transient version of 
the same model, with the cell starting out from 
an undeformed state, it is necessary to state that 
the fluid flow velocity be the same as the 
velocity of the deforming obstacle. The 
coordinate system velocity is u=(um,vm). At the 
channel entrance on the left, the flow has fully 
developed laminar characteristics with a 
parabolic velocity profile (see Figure 5) but its 
amplitude changes with time. 

At first, flow increases rapidly, reaching its 
peak value at 0.215 (s); thereafter it gradually 
decreases to a steady-state value of 3.33 (cm/s). 

 

Figure 5. Schematic of the problem statement. 
Simulated flow with cell presence at t=0.005 (s). 
 

The centerline velocity in the x direction, uin, 
with the steady-state amplitude U comes from 
the equation 

2
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U tu
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                            (19) 

where t must be expressed in seconds. At the 
outflow (right-hand boundary), the condition is 
p=0. On the solid (non deforming) walls, no-slip 
conditions are imposed, u=0, v=0, while on the 
deforming interface the velocities equal the 
deformation rate, u0=ut and v0=vt. The structural 
deformations are solved for using an hyperelastic 
formulation and a nonlinear geometry 
formulation to allow large deformations. For 
boundary conditions, the cell is fixed to the 
bottom of the fluid channel, so that it cannot 
move in any direction. All other object 
boundaries experience a load from the fluid, 
given by 

( ( ( ) ))T
T = − ⋅ −ρ +η ∇ + ∇F n I u u                      (20) 

where n is the normal vector to the boundary. 
This load represents a sum of pressure and 
viscous forces. With deformations of this 
magnitude, the changes in the fluid flow domain 
have a visible effect on the flow and on the cell, 
too. Figure 6 shows the geometry deformation 
and flow at t=4 (s) when the system is close to its 
steady state. 

Due to the channel’s small dimensions, the 
Reynolds number (R) of the flow is small (R << 
100), and the flow stays laminar in most of the 
area.  

The swirls are restricted to a small area 
behind the structure. 
 



 

 

Figure 6. Simulated flow velocity and geometry 
deformation at t=4 (s). The vectors indicate the flow 
direction and the color scale indicates flow-velocity 
magnitude (m/s). 

The amount of deformation as well as the size 
and location of the swirls depend on the 
magnitude of the inflow velocity. Most of time, 
the deformation follows the inflow velocity quite 
closely. Whenever the inflow velocity starts to 
decrease. Toward the end of the simulation, 
when inflow and structure deformation approach 
their steady-state values, the mesh velocity also 
decreases to zero. For the fluid domain are 
applied the following settings. For the boundary 
settings, we imposed a inlet condition with a 
mean velocity equal to uin (set to 3.33 (cm/s)). 
For the sides we apply condition of wall with 
sliding absent; for the boundary (δΩ) on the right 
we imposed type of outlet with a condition of 
pressure and no viscous stress with p0=0. The 
edges of the cell are characterized by conditions 
wall mobile dispersant (structural displacement) 
with the exception of the base cell which is fixed 
and not involved in the dynamic physical 
process, according to 

1 1 1 1 2 2 2 2( ( ( ) ) ( ( ) ) ) 0T Tη ∇ + ∇ −ρ −η ∇ + ∇ −ρ =n u u I u u I (21) 

Our studies have been based on a discrete 
domain with 231 elements. The number of 
degree of freedom is 1984. Mesh has been 
generated with triangular elements, having a 
geometric side of 0.00005 (mm) for vessel and 
cell. We exploited a FEM implementation 
utilizing a time-dependent direct linear solver 
with parallel calculation [16].  

Subsequently, we present final simulations in 
order to stress and strain results. 
 
 
 
 
 
 

5. Results 
 

 
Figure 7. Example map of the Von Mises stress in a 
red blood cell. 

 

Figure 8. The non-monotone deformation law. 
 

 
Figure 9. 3-D view of non-monotone deformation 
law. 
 



 

Figure 10. The complementary deformation density 
as integral of the deformation function. 
 
6. Conclusions 
 

The Simulated results were highly reliable, 
so our FEA package was very successfully 
simulating fluid–structure interaction in the 
human blood vessel. Our interest was to point 
out the concentration or inhomogeneity of the 
deformation on the contact area cell-wall. This 
particular result open the way to simulate the 
adhesion-detachment problem through more 
sophisticated model (i.e. functional analysis 
tools) such that microstructural characterization 
can be emphasized. 

Results can be exploited in order to estimate 
the kind of human cell starting from signals 
obtained by computer simulations. Stress FEM 
maps have been used to train the Artificial 
Neural Network-based classifier. The authors are 
actually engaged in this direction. 
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