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Why is the study of wave propagation important in PU foams?  Enriching lives through innovation
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Aim of the work

Foam properties depend on: To predict foam permeability (2D reference and
i. Foam microstructure and permeability; :> 3D Kelvin models) and to study the effect of cell
ii. Polymer viscoelasticity; face membranes on wave propagation through
ili. Foam fluid-structure interaction. PU foam, modelling the coupling between air-

and structure-borne wave propagation.
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Problem Formulation
Fluid-Structure interaction

Cellular microstructure domain

Linear-elastic material
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Air domain

No inertial term
Slow air flow through open cells
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+ boundary conditions
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Problem Formulation HUNTSMAN
Pressure gradient and average velocity in PU foams Enriching lives through innovation

15 Sinusoidal Pressure Gradient

Within a few cycles the average
velocity (flow) will oscillate at the
same frequency, but will be shifted
by a phase angle ¢ with respect to
the pressure gradient.
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Increasing w, the frequency of pressure gradient.
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Brennan et al., Acta Acust united Ac, (2010)
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Mathematical model of dynamic viscous permeability in PU foams Enriching lives through innovation

Sinusoidal Pressure Gradient
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n

Darcy’s law for porous materials

U

defines the relationship between the
average pressure gradient and the
average velocity by means of the
permeability
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Real and imaginary parts of dynamic permeability
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k — k(W—) 0) ' ' _ The frequency response of the real and imaginary parts of the
permeability will depend on the foam cell morphology.
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How are the real and imaginary parts of dynamical permeability obtained? Enriching lives through innovation

Simulation performed only at few frequencies
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2D reference model: rigid cellular microstructure Enriching lives through innovation

2D axial-symmetric model of an open cell face

| Increasing cell opening >
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1[Pa]-sin(wt) | | air
Air-borne wave propagation
Dynamic permeability — simulation results Airflow resistivity — experimental results of PU flex foams
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2D reference model: membrane effect Enriching lives through innovation
2D-FSI (Fluid Structure 2D-FSI model with PN
: N
membrane £y = .
Interaction) model 1 : The bending of the cell face membrane allows
| more fluid to flow through the cell.
I
Deformable Deformable | :
ps =1100 k%3 cellular thin cellular | Such effect is similar to an increasing of cell
—_< microstructure microstructure | | . .
E =10° Pa | opening ratio.
v =0.45 [
1 .
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Numerical example:

3D kelvin cell model
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The 3D model agrees what found in 2D reference
model.

The fluid pressure triggers the vibration of the thin
solid membranes. This increases the fluid flow
through the cell.
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Numerical example:
3D kelvin cell model: K5 —membrane effect
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3D kelvin cell model: cell opening and frequency effects Enriching lives through innovation

Low frequency — 10 Hz High frequency — 5000 Hz

Increasing cell
opening
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Increasing the frequency of pressure gradient
Stress concentrations and velocity flow decrease.
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3D kelvin cell model: vibrations amplitude Enriching lives through innovation

Smaller the cell opening is, bigger vibration amplitude
of the thin membrane;

The maximum membrane deflections are located along
the hole borders.

m
%107

Low frequency — 10 Hz

COMSOL Conference — 18-20 October 2017 — Rotterdam



Conclusions HUNTSMAN

Enriching lives through innovation

COMSOL Multiphysics has been used to study wave propagation
problem in PU foams; FSI is necessary to study the effect of cell
face membranes;

The main factors influencing the foam permeability are size and
cell hole area; increasing the cell opening ratio, the static
permeability increases.

=l Vibrations of the thin membranes have a similar effect to larger cell

FSI - Re(k)

==l opening; air flows less tortuously through the foam cell, and the
static permeability increases.

Membrane effect is negligible at high frequencies, where the
| viscous dissipation decreases and the drag that the solid structure
" exerts on the fluid is dominated by inertia effects.
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= Permeability characterises the ease with which a fluid can flow through a
porous medium, e.g., an open cell foam
. It is inversely proportional to the air flow resistance for isotropic foam, K = u /o

» The permeability of a foam is a function of the foam cell morphology

. Foam cell network, foam density, foam cell size distribution and degree of cell
opening

=  For anisotropic foam permeability is a tensor providing the geometric
relationship between the fluid flow and the pressure gradient

<Ux> l (Kxx ny sz) (aP/ax>
vy - ny Kyy Kyz aP/ ay
v K Ky Ko p/ 5,

z | zZX zy zZ

|

Permeability tensor
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Air flow meter CFD simulations results: flow and pressure

. Static air flow resistance is measured as a ratio of the pressure gradient and the
average speed, ¢ = Vp /v

. For acoustic foams the range of values for the static air flow resistivity is
approximately 103 — 106 N s m2

. It is also a measure of the degree of cell opening in a foam
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Mechanical Representation of Flexible Foam Enriching lives through innovation

Water

Foam cellular
H,O microstructure

Polyisocyanate

ocn ([ ~co
Mechanical
equivalent model of

Polyurethane foam

LI_I

Polyol

HO- -OH Hard and soft phase

, separated nanostructure
Polyurethane chemistry

Polyol  / — Isocyanate
Polyether F‘ % .
Polyester | coigmm— | Llss=mmm Polymeric MDI

Recycle PE ‘ e T — .
Formulations L M R Pure MDI
TDI
Pol th 1
R foam MDI variants
Flexible f -
EIZ);Itorilecr)iiToam Pre pOIymerS
Microcellular foam MDI mixed isomers
Adhesives

Thermoplastic urethanes (TPU)

COMSOL Conference — 18-20 October 2017 — Rotterdam




Microstructural analysis of flexible

polyurethane foam: Our experimental setup
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