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Huntsman Corporation 
Introduction to our business 

Revenues

$9.6
billion

Adjusted

EBITDA

$11.2
billion

2016

more than 75 manufacturing, R&D and 
operations facilities in over 30 countries;  

 
approximately 10,000 associates. 
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Huntsman Polyurethanes 
Introduction to Research & Development 

Foam Characterisation 
Acoustic laboratory 
Dynamic mechanical analysis 

 Adhesives, Coatings and 
Elastomers 

 Appliances 
 Automotive 
 Insulation 
 Composite Wood 

Products 
 Footwear 
 Furniture & Bedding 
 TPU 

PU chemistry Foam cell morphology Foam macro-properties Market application 

X-ray tomography 
Digital Imaging Correlation 
Alpha cabin 

Molecular scale 

Micro scale 

Meso scale 

Macro scale 

Polyol Isocyanate 

Polyurethane 

A multi-scale modelling challenge 
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Huntsman Polyurethanes 
Why is the study of wave propagation important in PU foams? 

Polyol 
Polyether 
Polyester 

Polyurethane 
Rigid foam 

Flexible foam 
Elastomeric foam 

Adhesives 
Thermoplastic urethanes (TPU)  

Isocyanate 
Polymeric 
MDI 
Pure MDI 
TDI 

Foam properties depend on: 
i. Foam microstructure and permeability; 
ii. Polymer viscoelasticity; 
iii. Foam fluid-structure interaction. 

PU chemistry 
Sound 
Absorbing Foam 

Seating 
Foam 

Sound 
Insulating Foam 

Foam cell morphology 

Micro-CT reconstruction of flexible foam 

2D micro-CT image of 
flexible foam 

membranes 

Aim of the work 
To predict foam permeability (2D reference and 
3D Kelvin models) and  to study the effect of cell 
face membranes on wave propagation through 
PU foam, modelling the coupling between air- 

and structure-borne wave propagation.  
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Problem Formulation 
Fluid-Structure interaction 
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Problem Formulation 
Pressure gradient and average velocity in PU foams 

Increasing w, the frequency of pressure gradient. 
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Within a few cycles the average 
velocity (flow) will oscillate at the 
same frequency, but will be shifted 
by a phase angle 𝜑 with respect to 
the pressure gradient. 
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𝑣0 , amplitude of velocity, decreases 
𝜑, the shift angle, increases 

Brennan et al., Acta Acust united Ac, (2010) 
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Problem Formulation 
Mathematical model of dynamic viscous permeability in PU foams 

l

   ie

l
Pi

v

p

v
wk

0

0





Darcy’s law for porous materials 

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.5 1 1.5 2

p
re

ss
u

re
 [

P
a]

 

time/T 

Sinusoidal Pressure Gradient 

l

ePi
p

iwt

0


defines the relationship between the 
average pressure gradient and the 
average velocity by means of the 

permeability 

real part + imaginary part 
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The static permeability is related to flow resistivity 

measure with an air flow 
resistivity experiment 

The  frequency response of the real and imaginary parts of the 
permeability will depend on the foam cell morphology. 
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Problem Formulation 
How are the real and imaginary parts of dynamical permeability obtained?  

l

Simulation performed only at few frequencies 
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porous material has been used to fit 
results and obtain dynamic permeability 
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Brennan et al., Acta Acust united Ac, (2010) 
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Numerical example:  
2D reference model: rigid cellular microstructure 

Air-borne wave propagation 
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Simulation results are qualitatively confirmed by 
the experimental results. 
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Numerical example:  
2D reference model: membrane effect 
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2D-FSI (Fluid Structure 
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Fluid-structure interaction – Membrane effect 

Dynamic permeability – simulation results 
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Viscosity 
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dissipation 

air 

Deformable 
cellular 
microstructure 

Deformable 
thin cellular 
microstructure 

air 

cell opening = 0.3d 

Maximum cellular microstructure deflection: 
mm 102.1 5mm 108.2 6

w=10 Hz 
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The bending of the cell face membrane allows 
more fluid to flow through the cell. 

 
Such effect is similar to an increasing of cell 

opening ratio. 
 

The effect is negligible at high frequency. 

FSI FSI with membrane 
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Numerical example:  
3D kelvin cell model 

The 3D model agrees what found in 2D reference 
model. 

 
The fluid pressure triggers the vibration of the thin 

solid membranes. This increases the fluid flow 
through the cell. 
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Numerical example:  
3D kelvin cell model: K5 – membrane effect 

Static permeability 

0.00E+00

5.00E-07

1.00E-06

1.50E-06

2.00E-06

2.50E-06

K5 K10 K20 K30

st
at

ic
 p

er
m

ea
b

ili
ty

 [
m

2
] 3D-air

3D-FSI

Increasing cell opening 

3D-air model 3D-FSI model 

Dynamic permeability 

At high frequencies such membrane effect is less 
visible, but it is still present. 

3D-air model 3D-FSI model 
Fluid flow generates a pressure on the cellular 

microstructure. 
 

When the microstructure is modelled as rigid body, the 
fluid flow is constrained to a more tortuous path through 

the cell. 
 

The FSI model is more representative of the real foam 
behaviour: the air flow triggers membrane vibrations and, 

consequently, air flows easily through the cell. 

3D-air 

3D-FSI 



COMSOL Conference – 18-20 October 2017 – Rotterdam 

Numerical example:  
3D kelvin cell model: cell opening and frequency effects 

Low frequency – 10 Hz High frequency – 5000 Hz 
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Increasing the frequency of pressure gradient 
Stress concentrations and velocity flow decrease. 

Increasing cell 
opening 

 
Air flow 

increases; 
 

Stress 
concentrations 

are located 
more close to 
the structures 

than on the cell 
faces. 
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Numerical example:  
3D kelvin cell model: vibrations amplitude 

Low frequency – 10 Hz 

Smaller the cell opening is, bigger vibration amplitude 
of the thin membrane; 

 
The maximum membrane deflections are located along 

the hole borders. 
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Conclusions  
 

COMSOL Multiphysics has been used to study wave propagation 
problem in PU foams; FSI is necessary to study the effect of cell 
face membranes; 

The main factors influencing the foam permeability are size and 
cell hole area; increasing the cell opening ratio, the static 
permeability increases.   

Vibrations of the thin membranes have a similar effect to larger cell 
opening; air flows less tortuously through the foam cell, and the 
static permeability increases.  

Membrane effect is negligible at high frequencies, where the 
viscous dissipation decreases and the drag that the solid structure 
exerts on the fluid is dominated by inertia effects. 
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Permeability Tensor 

 Permeability characterises the ease with which a fluid can flow through a 

porous medium, e.g., an open cell foam 

 It is inversely proportional to the air flow resistance for isotropic foam, 𝐾 = 𝜇 𝜎  

 

 The permeability of a foam is a function of the foam cell morphology 

 Foam cell network, foam density, foam cell size distribution and degree of cell 

opening 

 

 For anisotropic foam permeability is a tensor providing the geometric 

relationship between the fluid flow and the pressure gradient 
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Air Flow Measurements of Foams 

Air flow meter 

sample 

CFD simulations results: flow and pressure 

 Static air flow resistance is measured as a ratio of the pressure gradient and the 

average speed, 𝜎 =  𝛻𝑝 𝑣  

 For acoustic foams the range of values for the static air flow resistivity is 

approximately 103 – 106 N s m-2 

 It is also a measure of the degree of cell opening in a foam 
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Darcy’s and Forchheimar’s equations 

𝛻𝑝 = 𝜎𝑣 

Darcy’s law 

𝛻𝑝 = 𝜎𝑣 + τ𝑣
2 

Forchheimar’s relation 

Acoustiflex foam samples 
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Mechanical Representation of Flexible Foam 

Polyol 

Polyether 

Polyester 

Recycle PE 

Formulations 

Polyurethane 

Rigid foam 

Flexible foam 

Elastomeric foam 

Microcellular foam 

Adhesives 

Thermoplastic urethanes (TPU)  

Isocyanate

Polymeric MDI
Pure MDI
TDI

MDI variants
Pre-polymers

MDI mixed isomers
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Microstructural analysis of flexible 
polyurethane foam: Our experimental setup 

Bruker Skyscan 1272 

 

 
 

 

 

 

 

 

 

 

 


