

Simulation Methods on Virtual Laboratories for Characterization of Functionalized Nanostructures

E.Lacatus ^{1*}, G.C. Alecu ², A. Tudor ³, M. Sopronyi ⁴

1. Polytechnic University of Bucharest (UPB), Assoc. Professor, Ph.D., Email: elena.lacatus@upb.ro

- 2. Groupe Renault, Romania
- 3. STAR Storage, Romania
- 4. National Institute for Laser, Plasma & Radiation Physics (INFLPR), Romania

Overview

- Virtual Lab Emergency
- COMSOL Multiphysics Collaborative Modeling Environment
- COMSOL Multiphysics Teaching Tool on Modeling & Simulation
- Use of COMSOL Multiphysics
- Mass Spectrometer
- Laser Crystal Growth Process
- Powder Sintering
- Polishing Sintered Powder Blocks

Virtual Lab Emergency

- Using remotely the existing top R&D Laboratories facilities would become soon common practice, but for now basic training, teaching and R&D collaboration on specific issues can be successfully deployed.
- A first step on producing functionalized materials to be integrated on smart applications is to properly settle their multi-physical models as to adequately consider their properties during designing the processing, post-processing and controlling phases based on successive simulations.
- For settling the multi-physical models associated to R&D Labs installations and equipment, **COMSOL Multiphysics is a core-function software to be used** for a proper and deeper understanding of the complex-dynamic relationship existing among Physics, Processing and Controlling on experimental research.
- Teaching "Research Process Mapping" using the principles of scientific methods within Research Labs is a challenge and an opportunity, equally.

COMSOL Multiphysics

COMSOL Multiphysics 2017 ROT Teaching Tool on Modeling & Simulation

Use of COMSOL Multiphysics

Mass Spectrometer

The main physical processes related to the lab installation (e.g., Mass Spectrometer) were described adapting the existing COMSOL Multiphysics ® models to the installed lab equipment data.

COMSOL CONFERENCE 2017 ROTTERDAM

(a) Longitudinal section view within the ion source (SolidWorks model and COMSOL Apps Gallery)

Simulation Methods on Virtual Laboratories for Characterization of Functionalized Nanostructures

Laser Crystal Growth Process

Crystal growth process dynamics

COMSOL

CONFERENCE

2017 ROTTERDAM

Salt crystal growth temperature related process

Laser Crystal Growth Process (cont. I)

COMSOL CONFERENCE 2017 ROTTERDAM

Thermal field dynamics during crystal growth (CAG [2])

Thermal field dynamics during crystal growth (CAG [2,3]

Powder Sintering

Powder sintering (adapted model CAG [4]) Crystal Polishing Equipment (CATIA imported CAD model)

10

Polishing Sintered Powder Blocks

Polishing dynamics' and thermal effects Time dependent (a, b) thermal flow and material thermal stress studies adapted form CAG [5]

b

Conclusions

- COMSOL Multiphysics® software and COMSOL App Gallery were used as valuable teaching tools.
- Comparing the laboratory observations with the calculated/simulated data from the COMSOL App Gallery, understanding, adapting or redesigning an application is a first learning step on modeling and simulation.
- For real R&D lab equipment and processes the Apps Gallery models were used to understand the experiments path and each parameter's influence on overall process.
- The main physical processes related to the lab installation were described adapting the existing COMSOL Multiphysics ® models to the installed lab equipment data
- All experimental data related to the on-the-site process were archived in dedicated modules for each specific installation. These would be further on adapted to the different experimental arrays.

Thank you

