

Numerical Simulation of Pool Film Boiling Heat Transfer during Quenching of Heated Cylindrical Rods

> Shikha A. Ebrahim and Fan-Bill Cheung Department of Mechanical and Nuclear Engineering Pennsylvania State University

> > Adel Alshayji Department of Mechanical Engineering Kuwait University

October 5th, 2017

Experimental Facility, Test Samples, and Method

Computational and Experimental Results

Presentation Outline

Introduction and Background

Experimental Facility, Test Samples, and Method

Computational and Experimental Results

Related Previous Research

4

The Objectives of the Current Research

Study the Effect of Various Parameters on Pool Film Boiling

Effect of Liquid Subcooling

(2-10 degrees of liquid subcooling)

Effect of Surface Material

(Stainless steel and Zirconium rods)

Experimental Facility, Test Samples, and Method

Computational and Experimental Results

Experimental Test Facility

Fabrication of the Test Samples

Modeling Domain and Boundary Conditions

A 2D axisymmetric domain with heat transfer in fluid, phase change, and turbulent flow physical models were selected

- Gravity force was added to the water to involve the buoyancy force
 - The water domain was selected as a phase change material under the heat transfer in the fluid model. The latent heat of vaporization is given (2264.76 kJ/kg)

Meshing Analysis

Experimental Facility, Test Samples, and Method

Computational and Experimental Results

Vapor Film Thickness in Film Boiling Regime

Ten degrees of liquid subcooling pool

Vapor Film Thickness in Film Boiling Regime

Quenching Curve

T_{min} for various Liquid Subcooling

15

T_{min} for SS and Zr Samples

Simulated Boiling Curve

Experimental Boiling Curve

Substrate	Experimental (°C)	Simulated (°C)	Error (%)
Stainless Steel $\Delta T_{sub} = 10^{\circ}C$	355	420	18.3
Stainless Steel $\Delta T_{sub} = 2^{\circ}C$	320	367	14.6
Zirconium $\Delta T_{sub} = 2^{\circ}C$	389	393	1.0

Experimental Facility, Test Samples, and Method

Computational and Experimental Results

- As liquid subcooling increases, Tmin increases
- > Higher $\rho k c_p$ value of the substrate material contributes to a lower Tmin
- As the subcooling increases, the vapor film thickness decreases
- As the subcooling increases, the vapor film quenches faster indicating an enhancement in heat transfer

Questions?

Shikha A. Ebrahim Pennsylvania State University PhD Candidate sae184@psu.edu

