COMSOL CONFERENCE 2017 BOSTON

Calculating Impedance of a Common Mode Choke In High Frequency Regime

C.S.Lin (Jason) Pitotech Co Ltd

Common Mode Choke

- Electromagnetic Interference (EMI) filter
- Filter out EMI noise
- Power inverters, converters

https://www.lairdtech.com/products/cc2824j502r-10-auto

http://www.vacuumschmelze.com/en/research-innovation/application-know-how/common-mode-chokes.html

COMSOL CONFERENCE 2017 BOSTON

Motivation

- Self-resonance
- Inductive \rightarrow Capacitive
- Key indicator for performance
- Simulate impedance behavior in high-frequency regime

- Considerations:
- (1) Magnetic material
- (2) Inter-winding (paracitic) capacitance
- (3) Common Mode

- mm scale
 - Octagonal cross-section

- Two-Step approach:
- (1) Electrostatic model \rightarrow inter-winding capacitance
- (2) Time harmonic electromagnetic simulation \rightarrow impedance

Electrostatics

• Mutual capacitance

馬克仕威爾至互感	馬克仕威爾電容 (pF)										
0.48557	0.35709	0.032122	0.016541	0.011266	0.011432	0.0079020	0.0044302	0.0038294	0.0035496	0.0035206	0.0051186
0.35709	0.34684	0.34569	0.026594	0.013147	0.011272	0.0044326	0.0026380	0.0023666	0.0022710	0.0023307	0.0035218
0.032122	0.34569	0.33691	0.34512	0.026591	0.016541	0.0038286	0.0023649	0.0021827	0.0021525	0.0022709	0.0035505
0.016541	0.026594	0.34512	0.33699	0.34575	0.032152	0.0035522	0.0022715	0.0021546	0.0021823	0.0023661	0.0038297
0.011266	0.013147	0.026591	0.34575	0.34674	0.35717	0.0035215	0.0023300	0.0022719	0.0023649	0.0026378	0.0044314
0.011432	0.011272	0.016541	0.032152	0.35717	0.48557	0.0051207	0.0035211	0.0035526	0.0038282	0.0044320	0.0079038
0.0079020	0.0044326	0.0038285	0.0035521	0.0035213	0.0051207	0.48555	0.35721	0.032134	0.016538	0.011269	0.011435
0.0044301	0.0026380	0.0023649	0.0022714	0.0023300	0.0035212	0.35721	0.34685	0.34564	0.026589	0.013144	0.011268
0.0038294	0.0023666	0.0021827	0.0021546	0.0022719	0.0035527	0.032134	0.34564	0.33699	0.34517	0.026597	0.016548
0.0035497	0.0022710	0.0021525	0.0021823	0.0023649	0.0038283	0.016538	0.026589	0.34517	0.33680	0.34564	0.032138
0.0035207	0.0023307	0.0022709	0.0023661	0.0026379	0.0044320	0.011269	0.013144	0.026596	0.34564	0.34684	0.35725
0.0051188	0.0035217	0.0035504	0.0038297	0.0044314	0.0079038	0.011435	0.011268	0.016548	0.032138	0.35725	0.48560

Impedance Calculation

- Magnetic Fields + Electrical Circuit
- Ferrite Material

Impedance Calculation

• Magnetic Fields + Electrical Circuit

Results

• Self-resonance

10

Parasitic capacitance

• Overall (Similar to Proximity Effect)

Self-Resonance

• Material Behavior \rightarrow Self-resonance?

Conclusion

- Two-step FEM approach to study Impedance of Common Mode Choke
- Self-resonance
- Overall Effect Parasitic Capacitance (Similar to Proximity Effect)
- Self-resonance \rightarrow mainly attributed to material properties

