

Max-Planck Institut für Eisenforschung GmbH Interface Chemistry and Surface Engineering Department Atomistic Modeling Group (AMG) IMPRS-SurMat

Presented at the COMSOL Conference 2008 Hannover

FEM simulation of the scanning electrochemical potential microscopy (SECPM)

Fayçal. R. Hamou

P.U. Biedermann, M. Rohwerder, A.T. Blumeneau

Scanning Electrochemical Potential Microscopy (SECPM)

•*in-situ* imaging or potential mapping of the electrode surface with nanometer-scale resolution

•Measure the profile of Electrochemical Potential at the metal/electrolyte interface

Applications: electroplating, corrosion, and battery research and development.

Spectroscopic Mode : Scanning in Z direction

Recent experimental results

- C. Hurth, C. Li, and Allen J. Bard, J. Phys. Chem. C 2007, 111, 4620-4627
- The Gouy-Chpmann-Stern failed to describe the experiment results
- Non-Boltzmannian distribution of the ions
- The tip perturbs the electric double layer (EDL interaction)
- Theoretical approach is needed to interpret the SECPM measurement

M. Rohwerder and J.W. Yan MPIE

Nernst-Planck Equation in the steady state

Symmetric electrolyte 1:1

$$-D_{1}\nabla^{2}C_{1} - D_{1}\frac{zF}{RT}\nabla(C_{1}\nabla V) = 0$$

$$-D_{2}\nabla^{2}C_{2} - D_{2}\frac{zF}{RT}\nabla(C_{2}\nabla V) = 0$$

$$-\nabla(\varepsilon_{o}\varepsilon \nabla V) = \rho = \sum NC_{i}zq$$

$$\varepsilon_{0}\varepsilon \nabla V_{t} = \rho_{t} \text{ Gauss' equation}$$

$$Q = \int N z_{1}q C_{1}(x, y) + N z_{2}q C_{2}(x, y)$$
Surrounding the metallic tip

Solving the PD equations for $C_1 C_2 V$ and V_t

Finite element method

Multiphysics Modelling

Tip geometry effect

Protruding tip

Non-Protruding tip

Tip geometry effect: Electric potential distribution

Protruding tip

Non-Protruding tip

Tip geometry effect: Ions distribution

Cation

Tip geometry effect: Ions distribution

Cation

Anion

Tip geometry effect: electric potential

Tip geometry effect: ions distribution

Cation distribution

ε =4.5

ε =2.3

Coating effect: electric potential

Coating effect: ions distribution

M. S. Kilic, M.Z Bazant and A. Ajdari: *Phys. Rev. E*, 75, 021502 (2007) ²⁰

Potential

Cation concentration

Near future: SECPM Simulation with the modified Poisson-Boltzmann Model

Thanks to:

- IMPRS-SurMat program for financial support
- Dr. Andreas Erbe form MPIE
- YOU for listening