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Abstract: Multiphase fluid flow models in 

porous media are frequent in many important 

applications of Earth Sciences, such as in 

groundwater contamination, subsurface 

remediation and reservoir modeling. The aim of 

the present work is to implement in COMSOL 

Multiphysics a multiphase fluid flow model in 

porous media, also known in the oil reservoir 

engineering literature as a black oil model, using 

a standard finite element approach. In particular, 

we are interested to apply this model coupled 

with a multiphase, multicomponent transport 

model to study Enhanced Oil Recovery 

processes at laboratory scale. The model is based 

on the oil phase pressure and total velocity 

formulation in which the capillary pressure is 

taken in account. The numerical implementation 

is validated comparing the results with the 

analytical solution from the Buckley-Leverett 

theory, and it is shown its performance for a 

water flooding case study through a sandstone 

core. 

 

Keywords: black oil, multiphase fluid flow, 

porous media, capillary pressure model, EOR. 

 

1. Introduction 
 

The goal of this work is to implement a 

multiphase fluid flow model in porous media. In 

particular, we are interested to apply this model 

coupled with a multiphase, multicomponent 

transport model, to study Enhaced Oil Recovery 

processes at laboratory scale.  

In view of the scale and resolution 

requirements for the flow model, it could be 

acceptable to perform the implementation 

making use of the standard finite element 

framework provided in COMSOL Multiphysics. 

The model is based on the oil phase pressure 

and total velocity formulation given by Chen Z. 

[1] in which the capillary pressure, i.e., pressure 

difference between phases, is taken in account.  

The implementation is validated comparing 

the numerical results with the analytical solution 

for the Buckley-Leverett problem, and it is 

shown its performance for a water flooding case 

study through a sandstone core (reservoir rock 

sample). 

 

2. Multiphase Fluid Flow Model in 

Porous Media 
 

2.1 The Black Oil Model 

 

A multiphase fluid flow model through 

porous media, also known in the reservoir 

engineering literature as black oil or beta model 

[2], can be obtained applying the systematic 

approach for modeling continuum systems, 

which basically consists of deriving a set of local 

balance equations for intensive properties (in this 

case mass) by components and phases included 

in the model [3].    

The main assumptions considered in the 

model are: (1) there are three phases: water ( w ), 

oil ( o )  and gas ( g ), (2) porous matrix and 

fluids are slightly compressible, (3) oil phase 

consists of two components: non volatile oil and 

dissolved gas, while the water and gas phases are 

pure, i.e., they are compound for only one 

component respectively, (4) diffusion will be 

neglected for all phases, (5) it is considered that 

the porous medium is fully saturated, but the 

phases are separated in the pore space and (6) the 

whole system is in local thermodynamic 

equilibrium. 

The equation system of the black oil model 

[2] is given by 
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Here, uα  represents the volumetric phase 

velocity, which can be expressed by the Darcy 

law as follows 
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Where φ  and k  denote the porosity and 

absolute permeability tensor of the porous 

system, while Sα , αµ , αρ , pα , uα , Bα , r
k α  

and qα  are the saturation, viscosity, density, 

pressure, Darcy velocity, formation volume 

factor, relative permeability, and external source 

term, for  each phase  , ,g o wα = , respectively. 

While 
so
R is the gas solubility and gɶ  is the 

gravitational, downward-pointing, constant 

vector. 

As can be observed the equation system (1)-

(3) consists of only three equations and it 

contains six unknowns ( ), , , , ,
o g w o g w
p p p S S S , 

therefore the following three additional equations 

are required for the system to be determined: 
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where 
cgo
p  and 

cow
p  are gas-oil and oil-water 

capillary pressures, respectively. 

 

2.2 Formulation based on Oil Pressure and 

Total Velocity 

 

Usually the black oil model presented above 

is solved numerically by finite difference or 

finite volume methods [4]. For numerical 

implementation using a finite element method 

the black oil model has to be reformulated in 

more convenient manner. A review of such kind 

of formulations is given in [1]. Here, we will 

present a particular formulation based on oil 

phase pressure and total velocity. 

 

For convenience, the following notation is 

introduced: for  , ,w o gα = , 
r
kα α αλ µ=  are 

the phase mobility functions, αλ λ=∑  is the 

total mobility and fα αλ λ=  are the fractional 

flow functions. So that 1fα =∑ . The total 

velocity is defined as u uα=∑ . 

Since the oil is a continuous phase and 

consequently its pressure is well behaved, we are 

going to define the oil phase pressure 
o
p  as the 

pressure variable p . 

After performing the corresponding notation 

substitution and appropriate manipulation on the 

black oil model (1)-(3), the system of equations 

transforms in a single pressure equation 

, ,
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and two saturation equations, for ,w oα =  
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where, total and phase velocities are given by   
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2.3 Laboratory Scale Flow Model  

 

The system of equations given in (6)-(8) 

represent a quite general multiphase fluid flow 

model in porous media, but as was mentioned 

before, we are interested to apply our flow model 

to reproduce the flow behavior at laboratory 

scale. Hence, taking into account the laboratory 

conditions, we can make the following further 

assumptions to the flow model: 

• Due to the small variation range of the 

pressure, water and oil phases can be 

considered incompressible, i.e., 1
o w
B B= = . 

• The term ( )1
g g
u B⋅ ∇  can be neglected 

since the pressure gradient is small ( 1p∇ ≪ ). 



• The gas dissolution in the oil phase doesn’t 

take place ( 0
so
R = ). 

• The effect of gravity gɶ  can be ignored. 

• The porous medium is homogeneous 

( .constφ = ) and isotropic ( k k I= ). 

After including the previous simplifications 

in the equation system (6)-(8) we obtain: 
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Where, total and phase velocities can be 

rewritten as follows 
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Finally, replacing velocities in pressure and 

saturation equations (9)-(10) by the expressions 

given in (11) and expressing the capillary 

pressure gradients in terms of saturation: 
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the equation system for the fluid flow model in 

porous media becomes: 
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where 
1 g

g

g o

dB
c

B dp
= −  is the gas compressibility. 

Saturation equations 
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Total and phase velocities 
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3. Numerical Implementation 
 

A brief review of the state of the art literature 

concerning the numerical implementation of 

multiphasic fluid flow model reflects that the 

finite difference (FD) and finite volume (FV) 

methods are the general framework for 

numerical simulation in very large problems [4]; 

however, the basic mixed finite element (MFE) 

method [5] has shown to be superior for accurate 

flux calculation in heterogeneous media in 

comparison to conventional FD and FV methods.  

On the other hand, a mixed finite element 

approach requires a special Raviart-Thomas 

mixed space for base and weighting functions, 

which makes more difficult its implementation. 

In view of the scale and resolution 

requirements for our flow model, we decided 

that it could be acceptable to perform the 

implementation making use of the standard finite 

element framework provided in COMSOL 

Multiphysics [6]. 

In particular, the numerical implementation 

of previously derived model was accomplished 

using the PDE mode for time dependent analysis 

in the coefficient form. 

Although the model presented in the previous 

section is triphasic (water, oil and gas) hereafter, 

for simplicity and without lost of generality, we 



will reduce our discussion about the numerical 

implementation to the biphasic case (water, oil). 

For the biphasic case, i.e., we have only two 

phases: water ( w ) and oil ( o ).  It is assumed 

that the fluids are incompressible, and 

consequently the equation system (13)-(15) is 

simplified as follows: 

( )

;

cow

w w

w

w o

dp
k p k S

dS

q q

λ λ−∇ ⋅ ∇ + ∇ ⋅ ∇

= +

 
 
                (16) 

( ) ;

w cow

w w

w

w w

S dp
k S

t dS

k p q

φ λ

λ

∂
+ ∇ ⋅ ∇

∂

−∇ ⋅ ∇ =

 
 
                           (17) 

The system of equations (16)-(17) can be 

rewritten in matrix form as follows: 
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The previous matrix representation can be 

translated in straightforward manner to the 

standard COMSOL notation in coefficient form: 
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where 
a
e ,α,γ,β,a 0≡ . 

To complete the model only remains to 

define suitable constitutive laws for relative 

permeabilities (
rw
k ,

ro
k ) and oil-water capillary 

pressure 
cow
p  and to prescribe proper initial and 

boundary conditions. 

In the next two sections the flow model 

described above will be tested for two specific 

problems in 1-D. For defining initial and 

boundary conditions in those problems the 

following notations will be introduced: 
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Where q 0≡ , but h  depends on the type of  

boundary conditions. 

 

4. Numerical Simulations 
 

4.1 Buckley-Leverett Problem 

 

We first will verify the implemented 

numerical flow model with known analytical 

solutions. To this end, we solve the Buckely–

Leverett problem in a homogenous medium with 

different fluid properties and zero capillary 

pressure [7].  

We consider a 1-D horizontal homogeneous 

domain of length 300 m, initially saturated with 

oil. Water is injected with a constant flow rate at 

one end to displace oil to the other end, where 

the pressure is kept constant.  

The relative permeability constitutive 

equations are given by: 
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rw e ro e
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where 1ω =  is for the linear case and 2ω =  is 

for the quadratic case,  whereas 
e
S  is the 

effective or normalized saturation, which is 

defined as: 

1
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where 
rw
S  and 

ro
S  are the residual saturations 

for water and oil, respectively. 

In relation to the general model description 

given in COMSOL notation in (19), only the 

matrix c  and vector f are modified 
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Since 0
cow
p ≡  and , 0

w o
q q ≡ . Note that it 

was introduced a small artificial diffusion 

coefficient ( ε ) in the saturation equation to 

stabilize the numerical solution, due to its 

hyperbolic nature, numerical instabilities can be 

appeared. 
 

Table 1: Buckley-Leverett problem data 

 

Property Units Value 

Domain length 

(xmax) 

m 300 

Absolute Permeability 

( k ) 

m
2
 1.00E-15 

Porosity (φ )  0.2 

Water viscosity (
w

µ ) Pa.s 1.00E-03 

Oil viscosity (
o

µ ) Pa.s 1.00E-03 

Residual water 

saturation (
rw
S ) 

 0 

Residual oil saturation 

(
ro
S ) 

 0.2 

Injection rate m.s
-1 

3.4722E-07 

Production pressure MPa 10 

Artificial diffusion 

coefficient  

  1.00E-6 

 

For this problem the initial conditions are 
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Where 0.8
in

w
S ≡ , 

-1
3.47E-7m s

in

p
g ≡ ⋅ , 

10MPa
out
p ≡ . 

The relevant data are taken from [8] and are 

provided in Table 1. 

The simulations were carried out for three 

cases with different water-oil viscosity ratios 

combining two types of relative permeability 

models (linear and quadratic) for seven time 

periods, (see Table 2).  

 

Table 2: Simulated cases for Buckley-Leverett 

problem 

 

Cases Relative 

permeability 

model 

(ω ) 

Viscosity 

ratio 

(
w o

µ µ ) 

Simulation 

periods 

( maxt ) 

[days] 

(a) 1 2 300-900 

(b) 1 2/3 300-900 

(c) 2 2/3 300-900 

 

4.2 Water Flooding Case Study  

 

The second problem is about to reproduce 

the flow behavior in a water flooding experiment 

through a sandstone core under laboratory 

conditions. The intention is to couple this flow 

model with multiphase and multicomponent 

transport equations to study Enhaced Oil 

Recovery processes [9]. Data of this problem is 

given in Table 3. 

In this case, the relative permeability 

constitutive equations are based on the Brooks-

Corey  model [10]: 
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where θ  characterizes the pore size distribution. 

While oil-water capillary pressure is defined 

by the Leverett J-function: 
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where 
t
p  is the entry or left threshold pressure 

assumed to be proportional to ( )1 2
kφ . 

Consequently, we can express the oil-water 

capillary pressure derivative as follows: 
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We impose the following initial conditions 

( ) ( )
0 0 0 0

10MPa, 0.2  
w w

p t p S t S= ≡ = ≡   (31) 

and boundary conditions 
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Where 
-1

5.3E 07 m s
in

p
g −≡ ⋅ , 10MPa
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p ≡ . 

 

Table 3: Water coreflooding experimental data 

 

Property Units Value 

Domain length (
max
x ) m 0.25 

Absolute Permeability 

( k ) 
m

2
 8.25E-13 

Porosity (φ )  0.2 

Water viscosity (
w

µ ) Pa.s 1.00E-03 

Oil viscosity (
o

µ ) Pa.s 1.00E-02 

Residual water 

saturation (
rw
S ) 

 0.2 

Residual oil saturation 

(
ro
S ) 

 0.15 

Injection rate m.s
-1 

5.3E-07 

Production pressure MPa 10 

Brooks-Corey 

parameter (θ )  
 2 

Entry threshold 

pressure (
t
p ) 

 MPa 1.00E-2 

 

6. Results and Conclusions 
 

In the figure 1, the numerical solutions of the 

Buckley–Leverett problem with linear relative 

permeabilities and viscosity ratio 1
w o

µ µ =  for 

a time period of 300 days with different artificial 

diffusion coefficients are shown.  We can 

observe that it is attained the best trade of in 

terms of efficiency and accuracy for an artificial 

diffusion coefficient value 1 7eε = − . 

Figures 2-4 show a quite well qualitative 

reproduction of the analytic solution behavior for 

the Buckley–Leverett problems for cases (a)-(c) 

described in table 2, respectively. These 

problems were numerically solved with the 

optimal artificial diffusion coefficient 

value 1 7eε = −  previously obtained. 

The numerical simulation of the water 

coreflooding experiment through a sandstone 

core during a time period of 24 hours is shown in 

figure 5. It can be observed the formation of a water 

front displacing the oil through the porous medium 

which is recovered at the production end of the core.  

The main result of the present work is the 

implementation of a biphasic (water-oil) flow 

model in porous media, including capillary 

pressure, which coupled to multiphase and 

multicomponent transport equations could be 

useful to study Enhaced Oil Recovery processes 

at laboratory scale. 

Even more, applying a flow model coupled 

with transport equations can be serve to study the 

impact in the flow conditions due to the porosity 

and permeability alterations by transport 

processes, such as adsorption of some fluent 

components. 
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Figure 1. Numerical solutions of the Buckley–

Leverett problem with linear relative permeabilities 

and viscosity ratio 1
w o

µ µ =  for a period of 300 

days, varying artificial diffusion coefficient ( ε ). 

 
Figure 2. Numerical solutions of the Buckley–

Leverett problem for case (a) with linear relative 

permeabilities and viscosity ratio 2
w o

µ µ =  for time 

periods from 300 to 900 days. 

 
Figure 3. Numerical solutions of the Buckley–

Leverett problem for case (b) with linear relative 

permeabilities and viscosity ratio 2 3
w o

µ µ =  for 

time periods from 300 to 900 days. 

 
Figure 4. Numerical solutions of the Buckley–

Leverett problem for case (c) with quadratic relative 

permeabilities and viscosity ratio 2 3
w o

µ µ =  for 

time periods from 300 to 900 days. 

 
Figure 5. Numerical simulation of the water 

coreflooding experiment for a time period of 24 hours. 

 


