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In budding yeast, we model stochastic microtubule dynamics and their regulation in 2D- and 3D geometries created with COMSOL. Our  C++ 
simulation engine improves on state-of-the-art in performance. Its results can be used for virtual microscopy and experimental design.
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We achieved a 2-fold performance increase:

We tested our C++ Next Subvolume Method (NSM) 
solver against the state-of-the-art C solver URD-
ME[1] on the well-known MinD model from E. coli:
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To accurately simulate a fluorescence microscopy ex-
periment in silico, our collaborators and us developed[2] 
a method to enable physically-based microscopy of our 
simulation results:

in vivo, we often image at the resolution limit, where distinguishing 
hypotheses may not be trivial.
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Reaction-Diffusion Model on Dynamic Subdomains (Microtubules)

Workflow for Simulation & Analysis of Stochastic Reaction-Diffusion Models
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Microtubule Structure

A single microtubule 
consists of 13 protofilaments.

Microtubule Dynamics

GTP-tubulin subunits attach and subsequently hydrolyze to 
GDP-tubulin. Once GDP-tubulin reaches the growing plus tip, 
the microtubule rapidly starts depolymerizing, giving rise to a 
highly dynamic system.

Growing 
Microtubule

Shrinking M
icrotubule

Catastrophe

Rescue

Microtubule Plus-Tip
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 dissociation Catastrophe

When 3/13 proto- 
filaments GDP-exposed[3]

Whole Microtubule  
 GTP-tubulin ->  
 GDP-tubulin (hydrolysis)
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Occurs as a result of  

regulatory micro- 
tubule-associated pro-

teins in vivo.
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 Diffusion
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Microtubule Interaction with  
Diffusing Regulatory Molecules

We are currently step-by-step adding regu-
latory molecules that modify microtubule dy-
namics in budding yeast cells, testing different 
hypotheses about their interaction network:

[3] H. Bowne-Anderson et al, Bioessays 35, 452–61 (2013).
[4] C. A. Hale et al, EMBO J. 20, 1563–1572 (2001).

We use models based on the reaction-diffusion master equation (RDME) to combine stochastic mi-
crotubule dynamics with reacting & diffusing regulatory and signaling molecules:
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Motors

In the RDME, reac-
tions and diffusion 
events  are defined on 
the voxels spanned 
by the dual mesh.

Domain Discretization

𝑗𝑗 ∈ 1, … ,𝐾𝐾 : voxel in dual mesh
𝑉𝑉𝑗𝑗: Volume of voxel 𝑗𝑗

System State

Master Equation of the Probability Density Function

Reactions & Diffusion

C++ Solver:
Next Subvolume

Method (NSM)

𝑖𝑖 ∈ 1, … ,𝑁𝑁 : chemical species
𝑥𝑥𝑖𝑖𝑖𝑖: # molecules of chemical species 𝑖𝑖 in voxel 𝑗𝑗

𝒙𝒙 𝑡𝑡 ∈ ℕ≥0
𝑁𝑁×𝐾𝐾: state (of all species in all voxels) at time 𝑡𝑡

𝑟𝑟 ∈ 1, … ,𝑅𝑅 : reaction
𝒗𝒗𝑟𝑟: change vector of reaction r
𝜼𝜼𝑘𝑘𝑘𝑘: change vector of diffusion from k to j

Excerpt from the Proceedings of the 2016 COMSOL Conference in Munich


