

Modelling And Characterization Of Piezoelectric Structures: From Bulk Material To Thin Film

M. Bavencoffe¹, N. Tembhurnikar¹, B. Negulescu², J. Wolfman², G. Feuillard¹

- 1. INSA Centre Val de Loire, GREMAN, UMR CNRS 7347, 3 rue de la Chocolaterie, 41034 Blois, France
- 2. François Rabelais University, GREMAN, UMR CNRS 7347, Parc de Grandmont, 37200 Tours, France

OUTLINE

- ☐ Application: integrated structures based on piezoelectric thin films such as MEMS and NEMS.
- ☐ Aim: to get a predictive model for the design of an efficient device.
- ☐ Means: modelling by Finite Element Method and characterization by laser interferometry to assess of the mechanical response in quasistatic regime.

THEORETICAL APPROACH

 \Rightarrow The equations of piezoeletricity relate the mechanical strain and electrical displacement (S, D) to the stress and electrical field (T, E)

$$S_{\alpha} = s_{\alpha\beta}^{E} T_{\beta} + d_{i\alpha} E_{i}$$
 $D_{i} = d_{i\alpha} T_{\alpha} + \varepsilon_{ij}^{T} E_{j}$
 $\alpha, \beta = 1, \dots, 6$ $i, j = 1, 2, 3$

where s is the compliance tensor at constant electric field, d is the piezoelectric tensor and ε the permittivity tensor at constant stress.

 \Rightarrow Assuming that $S_1 = S_2 = 0$

$$d_{33}^{eff} = d_{33} - 2d_{31} \frac{s_{13}^{E}}{(s_{11}^{E} + s_{12}^{E})}$$

⇒ Investigated samples (Figure 1)

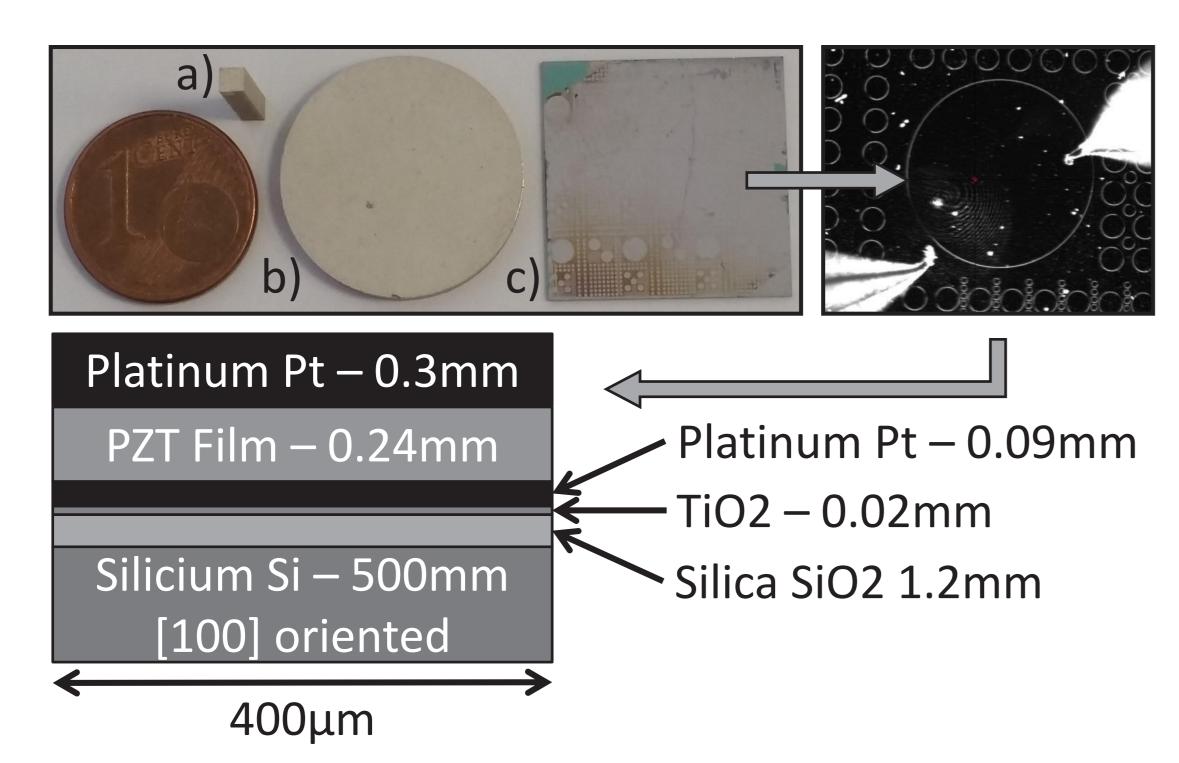


Figure 1. Samples: a) rod b) cylinder c) thin film

- ⇒ With COMSOL Multiphysics® FEA software
 - ♦ 3D geometry modelling
 - Excitation by a sinusoïdal voltage source
 - Time dependant analysis performed
 - Theoretical determination of the normal displacement on the top surface
- \checkmark We obtain information on the simulated d_{33}^{eff} of the piezoelectric material in picometers per volt.

EXPERIMENTAL APPROACH

⇒ The laser set-up (Figure 2) allows displacement measurements of few picometers.

Figure 2. Experimental set-up

 \checkmark We obtain information on the experimental d_{33}^{eff} of the piezoelectric material.

RESULT AND DISCUSSION

 \Rightarrow Values of the experimental d_{33}^{eff} are compared to the simulated ones in Table 1.

SAMPLE	EXPERIMENT (pm/V)	MODELLING (pm/V)	Δ (%)
Rod	402.07	423	4.9
Cylinder	6.92	7.36	5.9
Thin film	99.1	116	14.5

Table 1. Experiment vs.modelling

✓ Discrepancy less than 15% between modelling and experiment.

CONCLUSION

- ✓ Successful comparison of the modelling and the experiment for predicting the mechanical response of piezoelectric samples.
- ☑ Influence of the thickness on material properties.

FUTURE WORK

Study of the clamping effect and the influence of each layer of the thin film.

This work is funded by Région Centre-Val de Loire in the frame of the project COMHET.

