R. Andrés¹, O. Louisnard², E. Riera¹, V.M. Acosta¹

¹Grupo de Sistemas y Tecnologías Ultrasónicas (GSTU), ITEFI, CSIC, Madrid (Spain) ²Centre RAPSODEE UMR CNRS 5302. Ecole des Mines d'Albi, Albi (France)

Work supported by the project DPI2012-37466-C03-01 funded by the Spanish Ministry of Economy and Competitiveness

COMSOL CONFERENCE 2016 MUNICH

BACKGROUND

ANS

DEC 13 2006 13:32:51

Ultrasonic defoaming

NODAL SOLUTION

SMN =-.298E-04 SMX =.203E-04

STEP=1 SUB =1 FREQ=21953 REAL ONLY /EXPANDED RSYS=0 DMX =.333E-0

Enhancement of the dispersion of solid particles in liquids

US system for textile washing

-.242E-04

.187E-04 -.131E-04

-.754E-05 -.197E-05

.359E-05

9168-05

.147E-04

2

Mass transfer enhancement in food drying

COMSOL

2016 MUNICH

CONFERENCE

BACKGROUND

- ▲ Air (60°, v= 1.3 m/s)
- + Air (90°, v=1.3 m/s)

CSIC

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

 Ultrasonic vibration by direct contact (P = 100w, air 22°, v= 1m/s)

TRANSDUCER DESIGN LANGEVIN TYPE TRANSDUCER

$$\tan\left(\frac{\omega l_c}{c_c}\right) \tan\left(\frac{\omega l_i}{c_i}\right) = \frac{\rho_c c_c A_c}{\rho_i c_i A_i}$$

(Neppiras 1973)

Multiphysics simulation:

- Electrostatic.- Ceramic stack (piezoelectric materials PZT 802)

- Solid Mechanics.- Ceramics, back and front masses, brass flange and bolt).

27693 Hz

29625 Hz

TRANSDUCER DESIGN STEPPED-GROOVED CIRCULAR PLATE

se

COMSOL

2016 MUNICH

TRANSDUCER DESIGN STATIONARY STUDY

0.025

TRANSDUCER DESIGN EIGENFREQUENCIES

COMSOL

2016 MUNICH

ULTRASONIC FIELD DEHYDRATION CHAMBER

Multiphysics simulation:

- Electrostatic.- Ceramic stack (piezoelectric materials PZT 802)

- Solid Mechanics.- Transducer (PZT-802, steel and titanium alloy).

- Pressure Acoustics.- Air at 20°C (considered as a thermo viscous fluid).

Sound hard boundaries.

Free triangular mesh with maximum element size $\lambda/16$

ULTRASONIC FIELD FREE FIELD (PML)

Consejo Superior de Investigaciones Científicas

2016 MUNICH

Coherent side

ULTRASONIC FIELD

Focused side

0.05

0.1

0.15

2016 MUNICH

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

DEHYDRATION KINETICS

Porous materials: porosity, flow resistance, density...

Potato sample 20x20 mm

Fluid element. Effective density and sound speed

Effective density (kg/m ³)	Effective sound speed (m/s)
$1.21 + i \ 1.15 \ 10^8$	0.176 + i 0.176

(Morse and Ingard 1968)

Free triangular mesh with maximum element size $\lambda/16$

DEHYDRATION KINETICS ENERGY ABSORPTION ANALYSIS

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

2016 MUNICH

Chamber Radius (m)

CONCLUSION AND FUTURE RESEARCH LINES

A numerical study of a food dehydration system assistedby power ultrasound has been made.

Including:

- High power ultrasonic transducer design
- Acoustic field simulation
- Food samples behaviour

Future research lines: study the non-linear propagation and other configurations.

http://www.itefi.csic.es

THANK YOU VERY MUCH FOR YOUR ATTENTION

